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Introduction
Wave Field Synthesis (WFS) constitutes a ray-based,

implicit solution of the sound field synthesis (SFS) prob-
lem based on the Helmholtz integral equation [1]. Ex-
plicit solutions derived in the modal domain are known
for simple SFS geometries and fundamental virtual
source types.

In [1] we have shown equivalence — using a linear ar-
ray as secondary source distribution (SSD) — of 21/2-
dimensional (2.5D) WFS and a high-frequency/far-field
approximation of the so called Spectral Division Method
(SDM) [2, Sec. 3.7], which constitutes the explicit SFS
solution in Cartesian coordinates.

Near-field Compensated Higher Order Ambisonics
(NFC-HOA) [2, Sec. 3.5] is known as the explicit SFS
solution for spherical/circular SSD geometry, for which
an equivalence with WFS is assumed as well. In [2,
Sec. 4.4.2] it was stated that WFS constitutes a high-
frequency approximation of Near-field Compensated In-
finite Order Ambisonics by numerically evaluating the
driving filter’s Fourier coefficients. In the present contri-
bution further aspects and analytic calculus are given to
reinforce this claim for 2.5D SFS.

2.5D Sound Field Synthesis
To compare NFC-HOA and WFS for 2.5D SFS, a cir-

cular SSD is required as the modal expansion of HOA
is based on this geometry. The weighted superposition
of monochromatic sound fields emanated by spherical
monopoles reads for e+jωt time convention

P (x, ω) =

2π∫
0

D(x0, ω)
e−j

ω
c |x−x0|

4π|x− x0|
r0 dφ0, (1)

with speed of sound c, angular frequency ω, imaginary
unit j and SSD radius r0. Secondary sources are located
at x0 = (r0 cosφ0, r0 sinφ0)T. Listening positions r < r0
are denoted by x = (r cosφ, r sinφ)T. Vector magnitude
is denoted as | · |. Inner vector product is written as 〈·, ·〉.
The inward unit normal of the SSD contour at position
x0 is given as n̂0(x0) = −x0

r0
. For the discussion we use

dimensionless kr0 = ω
c r0 = 2π

λ r0 and x
λ with the wave

length λ.
Different driving filters D(x0, ω) realize sound fields

of virtual source types S(x, ω), such as e.g. i) a

point source SPS(x, ω) = e−jω
c
|x−xPS|

4π|x−xPS| at position xPS =

(rPS cosφPS, rPS sinφPS)T with rPS > r0 and ii) a plane

wave SPW(x, ω) = e−j
ω
c 〈k̂PW,x〉 propagating into direc-

tion of the unit vector k̂PW = (cosφPW, sinφPW)T.

WFS Driving Filters
The WFS driving filter for a virtual point source reads

[3, (2.137)]

DPS,WFS(x0, ω) = wPS(x0)

√
8π

jω

c
· (2)√

|x0 − xPS| · |xRef − x0|
|x0 − xPS|+ |xRef − x0|

〈k̂PS(x0), n̂0(x0)〉 e−j
ω
c |x0−xPS|

4π|x0 − xPS|
,

with the local wavenumber vector [4, 1] k̂PS(x0) =
x0−xPS

|x0−xPS| and the spatial secondary source window

wPS(x0) = 1 if 〈k̂PS(x0), n̂0(x0)〉 > 0 , zero otherwise.
The WFS driving filter for a virtual plane wave reads [3,
(2.177)]

DPW,WFS(x0, ω) = wPW(x0)

√
8π

jω

c
· (3)√

|xRef − x0|〈k̂PW, n̂(x0)〉e−jωc 〈k̂PW,x0〉,

with the spatial secondary source window wPW(x0) =
1 if 〈k̂PW(x0), n̂0(x0)〉 > 0 , zero otherwise. Positions
of amplitude correct SFS are defineable by the specific
referencing scheme linked to xRef(x0), cf. the referencing
function discussed in [4].

NFC-HOA Driving Filters
The NFC-HOA driving filter for a virtual point source

reads [2, Ch. 5]

DPS,HOA(x0, ω) =
1

2πr0

+M∑
m=−M

h
(2)
|m|(

ω
c rPS)

h
(2)
|m|(

ω
c r0)

ejm(φ0−φPS),

(4)

using the spherical Hankel function h
(2)
ν (·) of second kind

and order ν [5, Ch. 10]. The NFC-HOA driving function
for a virtual plane wave reads [2, Ch. 5]

DPW,HOA(x0, ω) =
2j
ω
c r0

+M∑
m=−M

(−j)|m|

h
(2)
|m|(

ω
c r0)

ejm(φ0−φPW).

(5)

Typically, modal order M ≤ L
2 −1 for a discretized SSD

of even L secondary sources is utilized to avoid spatial
aliasing [2, Sec. 4.4.1]. In this paper, we are rather inter-
ested for the cases of large arguments in Hankel functions
and M → ∞, i.e. a far-field/high-frequency approxima-
tion and infinite modal (i.e. spatial) bandwidth.
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Figure 1: Sound field’s level of NFC-HOA (left) and WFS
(right) synthesized virtual plane wave propagating to φPW =
−π

4
for kr0 = 20. White regions (0 dB) indicate positions of

amplitude correct SFS including the origin as intended.

Figure 2: Sound field’s level of NFC-HOA (left) and WFS
(right) synthesized virtual plane wave propagating to φPW =
−π

4
for kr0 = 200. White regions (0 dB) indicate positions of

amplitude correct SFS including the origin as intended.

Amplitude Correct Synthesis
The origin is used as the referencing point xRef = 0 for

WFS. This position also constitutes the expansion origin
of the given NFC-HOA driving filters. In Fig. 1 and
2 the level of a virtual plane wave synthesized by NFC-
HOA and WFS are depicted for normalized wavenumber
kr0 = 20 and kr0 = 200, respectively. The white regions
indicate amplitude correct synthesis at intended 0 dB.
For WFS, it is seen that diffraction artifacts due to the
spatial window w(x0) corrupt the intended sound field
for kr0 = 20. As expected, artifacts decrease for higher
kr0 under more valid far-field assumptions: for kr0 = 200
the typical positions of amplitude correct synthesis can
be observed, i.e. crescent moon like for a plane wave
when using the xRef = 0 referencing scheme, cf. [4, Fig.
8]. The NFC-HOA driving filter is smooth along x0, thus
no strong diffraction artifacts occur. Fig. 2 depicts the
similarity of the positions of amplitude correct synthesis
for NFC-HOA and WFS with chosen xRef = 0 within the
SSD.

Stationary Phase Approximation
In order to evaluate the resulting sound field at a spe-

cific position, (1) can be treated with a stationary phase
approximation (cf. [1, App. B]) w.r.t. φ0. Initially,
here we evaluate the origin, our intentionally chosen
reference point xRef = 0 for WFS driving functions that
constitutes the expansion center for NFC-HOA as well.

The SPA of (1) using DPS,WFS(x0, ω) and
DPW,WFS(x0, ω) precisely results in the correct am-
plitude and phase of the intended virtual sound fields
SPS(x, ω) and SPW(x, ω), respectively, cf. [7]. This is due
to the single stationary secondary source x∗0 = (r0, φ

∗
0)

that is found along the line xPS → x∗0 → 0 for a virtual
point source and along the line k̂PW → x∗0 → 0 (where
active secondary source selection holds as well) for a
virtual plane wave, respectively.

The SPA of (1) using DPS,HOA(x0, ω) and
DPW,HOA(x0, ω) in general follows the same principles,
cf. [7]. Since the SPA relies on far-field/high-frequency
assumptions, it is meaningful to apply a large argument

approximation h
(2)
ν (z) ≈ jν+1 e−jz

z within the driving
functions first (which by itself is an SPA, the derivation
can thus be performed in different ways). For the
virtual point source the large argument approximation
ω
c rPS →∞, ω

c r0 →∞ yields

DPS,HOA(x0, ω) ≈ 1

2πr0

e−j
ω
c rPS

e−j
ω
c r0

r0
rPS

+M∑
m=−M

ejm(φ0−φPS)

(6)

and for M →∞ the Dirichlet kernel evolves to the Dirac
delta function [6, Sec. 1.15], resulting in

DPS,HOA(x0, ω) ≈ 1

r0

e−j
ω
c rPS

e−j
ω
c r0

r0
rPS

δ(φ0 − φPS). (7)

For the virtual plane wave the large argument approxi-
mation ω

c r0 →∞ yields

DPW,HOA(x0, ω) ≈ 2

r0

r0
e−j

ω
c r0

+M∑
m=−M

ejm(φ0−φPWi) (8)

with the angle φPWi = φPW−π for plane wave incidence
rather than propagating direction φPW. For M → ∞
follows

DPW,HOA(x0, ω) ≈ 1

r0

4πr0
e−j

ω
c r0

δ(φ0 − φPWi). (9)

This case is most illustrative: By inserting driving filter
(9) into (1), the sound field is generated only by the sec-
ondary source x∗0 where φ0 = φPWi. The complex weight
4πr0ej

ω
c r0 of this stationary secondary source compen-

sates its amplitude decay towards the plane wave’s unit
gain amplitude in the origin and compensates its phase
shift towards the intended zero-phase of the plane wave
in the origin. These SPA treatments indicate that WFS
and Near-field Compensated Infinite Order Ambisonics
yield identical results at the origin.

Fourier Series
In further search of similarity or even identity of WFS

and NFC-IOA not only for some positions or a single
location, but generally for the synthesized sound field,
the equivalence of driving functions either in spatial or
Fourier series domain

D·,WFS(x0, ω)
?
= D·,NFC-∞OA(x0, ω)

D·,WFS(m,ω)
?
= D·,NFC-∞OA(m,ω)
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would be required. While WFS is inherently given in
spatial domain, NFC-HOA is analytically given as spatial
Fourier coefficients. Transferring both approaches to the
respective corresponding domain is not straightforward
when aiming for analytical solutions. Here, we follow
[2, Ch. 4.4.2], calculating a Fourier series of the WFS
driving filter. This is performed for the virtual plane
wave in detail. The Fourier series analysis [5, (1.84)]

D·,WFS(m,ω) =
1

2π

2π∫
0

D·,WFS(x0, ω) · e−jmφ0dφ0 (10)

for the virtual plane wave (3) with xRef = 0 leads to [7]

DPW,WFS(m,ω) = −
√

8πr0
jω

c
·[

e−jmφPW

2 jm−1
(Jm−1(

ω

c
r0)− Jm+1(

ω

c
r0))

]
∗m[

1

2π

−j

m
(e−jm(φPW+π

2 ) − e−jm(φPW−π2 ))

]
, (11)

denoting the ν-th order cylindrical Bessel function of
first kind by Jν(·) [5, Ch. 10]. The Fourier coefficient
DPW,WFS(m,ω) results from a convolution of the sound
field specific term within the first brackets (Fig. 4 top:
blue) and the secondary source selection window in the
second bracket (Fig. 4 top: red). Note that the vir-
tual source independent term Jm−1(ωc r0)−Jm+1(ωc r0) =
dJm(ωc r0)

d(ωc r0)
[5, (10.6.1)] is weighted by a virtual source de-

pendent term, here e−jmφPW

2 jm−1 for the plane wave, cf. [8]
for detailed treatment.

The analytic complex-valued convolution in the m-
domain is subject for further research. Numerical convo-
lution of the analytic terms and comparison against the
Fourier coefficients of the NFC-HOA plane wave driving
filter (5)

DPW,HOA(m,ω) =
2j
ω
c r0

(−j)|m|

h
(2)
|m|(

ω
c r0)

e−jmφPW (12)
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Figure 3: Level of Fourier coefficients NFC-HOA vs. WFS
for virtual plane wave φPW = −π

4
, kr0 = 200. Note that the

Fourier coefficients are continuously plotted for convenience
over normalized values m/ dkr0e.

is explored in the following. For that we utilize the nor-
malized spatial frequency variable m/ dkr0e. Accord-
ing to [2, Sec. 2.2] the region |m/ dkr0e| > 1 indicates
evanescent waves, whereas |m/ dkr0e| < 1 marks the spa-
tial bandwidth of propagating waves.

In Fig. 3, the level of Fourier coefficients for a vir-
tual plane wave is depicted for NFC-HOA vs. WFS for
rather large kr0 = 200. In the propagating wave region
the levels highly match, whereas WFS exhibits more en-
ergy in the evanescent wave region. This is again due
to the discontinuous secondary source selection window
compared to the smoother driving control in NFC-HOA,
cf. [3, p.95]. This artifact only completely vanishes when
kr0 → ∞. This in turn requires infinite spatial band-
width M →∞ for NFC-HOA.

A more detailed picture on the Fourier coefficients is
presented in Fig. 4 using rather low kr0 = 20 for clarity.
The top row shows the real and imaginary part of the
WFS-specific functions (11) involved in the convolution.
The middle and bottom rows compare NFC-HOA against
WFS w.r.t. real and imaginary part, magnitude and level
of Fourier coefficients. These plots indicate good similar-
ity, but no equivalence of the two approaches. Here, for
WFS even higher energy for evanescent waves can be ob-
served compared to Fig. 3 with kr0 = 200.

Conclusion
Although a strict proof is not yet available, the present

treatment supports the initial claim, that Near-field
Compensated Infinite Order Ambisonics and Wave Field
Synthesis with inherently infinite spatial bandwidth be-
have identically if i) referencing and expansion to the
origin is performed and ii) high-frequency/far-field as-
sumptions are fulfilled. The normalized wave number
kr0 → ∞ then requires modal order M → ∞ and vice
versa.
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Figure 4: Fourier coefficients of plane wave driving filter for NFC-HOA vs. WFS, kr0 = 20, φPW = −π
4

. Top row: WFS split
into real (left) and imaginary (right) part, sound field specific part (blue) ∗m spatial secondary source selection window (red).
Middle row: comparison of Fourier coefficients, real (left) and imaginary (right), NFC-HOA (blue) vs. WFS (red). Bottom
row: magnitude (left) and level (right) of middle row scenario. Note that the Fourier coefficients are continuously plotted for
convenience over normalized values m/ dkr0e. Plots created with [7, nfc hoa vs WFS drivingfunctions PW.py].
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