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Introduction
In spherical harmonics expansion of a homogeneous
sound field, the radial components are described by
spherical Bessel functions in the frequency domain [1].
The time-domain counterparts are Legendre polynomi-
als windowed by a rectangular pulse [2, 3, 4, 5]. Since
the discontinuity occurring at the edge of the rectangular
window exhibits an infinite bandwidth, a discrete-time
signal obtained by trivial sampling exhibits aliasing ar-
tifacts. Therefore, the resulting spectral distortions are
likely to affect the performance of applications that are
based on time-domain representations [6, 7].

In this paper, an analytical anti-aliasing filtering is ap-
plied to the time-domain radial functions in order to re-
duce aliasing. The presented method is adopted from
[8, 9, 10, 11] which was primarily proposed for digital
synthesis of analog synthesizer sounds such as square
waves and sawtooth waves. The discontinuities of the ra-
dial functions are replaced by smooth transient responses
thus limiting the bandwidth. The band-limited radial
functions thus can be sampled with considerably reduced
aliasing artifacts. While this paper only considers the
radial functions for plane waves, the presented approach
can be used for spherical waves as well [2].

Nomenclature Vectors (position and direction) are
represented in spherical coordinates x = (r, θ, φ), with
r ≥ 0 denoting the radius, θ ∈ [0, π] the colatitude, and
φ ∈ [0, 2π) the azimuth. Angular frequency is denoted by
ω = 2πf where f is the temporal frequency in Hz. The
imaginary unit is denoted by i (i2 = −1). The speed of
sound is assumed to be c = 343 m/s, and the sampling
frequency is set to fs = 44.1 kHz.

Continuous Time Representations
Consider the sound field of a plane wave propagating
in the direction npw = (1, θpw, φpw). The frequency-
domain representation of the spherical harmonics expan-
sion reads [1, Eq. (6.175)]

e−i
ω
c r cos Θ =

∞∑
n=0

(2n+ 1)i−njn(ωc r)Pn(cos Θ), (1)

where the sound field is expanded at the origin and
evaluated at x = (r, θ, φ). For each order n, the an-
gular (directional) dependency is described by the Leg-
endre polynomial Pn(·), and the radial dependency by
the spherical Bessel function of the first kind jn(·). The
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Figure 1: Radial functions in (a) frequency-domain
(magnitude) i−njn(ωc r) and (b) time-domain c

2r P̃n( cr t).
Frequency axes are scaled by r

c and the time axes by c
r .

latter are called the radial (basis) functions. The an-
gle between x and npw is denoted by Θ, i.e. cos Θ =
cos θ cos θpw + sin θ sin θpw cos(φ− φpw).

The time-domain representation of (1) reads [5]

δ
(
t− r

c cos Θ
)

=
c

2r

∞∑
n=0

(2n+ 1)P̃n( cr t)Pn(cos Θ), (2)

where the time-domain radial functions P̃n( cr t) coincide
with the Legendre polynomials Pn( cr t) for |t| < r

c and
vanishes elsewhere, i.e.

P̃n( cr t) :=

{
Pn( cr t), |t| < r

c

0, |t| > r
c .

(3)

This follows from the Fourier transform relationship
F
{
c
2r P̃n( cr t)

}
= i−njn(ωc r) [12, Eq. (10.59.1)]. The term

i−n is included in the frequency-domain radial function
so that the time-domain radial functions are real-valued.

In Fig. 1(a), the magnitude of the frequency-domain ra-
dial functions are depicted. For ω

c r � n, the peak val-
ues decay with −6 dB/octave regardless of the order,
which corresponds to the large argument approximations
jn(z) ≈ 1

z sin(z − nπ
2 ) [12, Eq. (10.52.3)]. Note that

the temporal frequency spectrum is not band limited.
The time-domain radial functions are shown in Fig. 1(b).
While the functions are continuous and smooth within
the interval |t| < r

c , jump discontinuities occur at |t| = r
c
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which results in the infinite bandwidth of the radial func-
tions.

Sampling and Aliasing
While the continuous-time representations (2) might
be suitable for theoretical studies, practical applica-
tions [6, 7] typically require a discrete-time model with
acceptable accuracy. A time discretization can be carried
out most straightforwardly by a uniform sampling of the
continuous-time representation, which leads to periodic
repetitions of the spectrum in the frequency domain [13,
Sec. 4.2]. Due to the infinite bandwidth of the radial
functions, cf. Fig. 1(a), the repeated spectra inevitably
overlap with the baseband spectrum resulting in alias-
ing artifacts. This section investigates the influence of
aliasing on the temporal and spectral characteristics of
discrete-time radial functions that are obtained by uni-
form sampling.

As depicted in Fig. 1(b), the time-domain radial func-
tions are Legendre polynomials windowed by a rectangu-
lar pulse,

c

2r
P̃n( cr t) =

c

2r

[
u(t+ r

c )− u(t− r
c )
]
Pn( cr t) (4)

where u(t) denotes the unit step function,

u(t) :=

{
0, t < 0

1, t > 0.
(5)

Assume that (4) is sampled at discrete time instances,

tk = k · Ts, k ∈ Z, (6)

with Ts = 1/fs denoting the sampling interval. The dis-
continuous points t = ± rc are generally fractional mul-
tiples of Ts, thus quantized in the discrete time domain.
This effect is demonstrated in Fig. 2(a) for a single unit
step function u(t − τ) with varying time shift τ . As t is
scaled by fs, the sample index k can be read from the
axis. It can be seen that the discrete-time signals (in-
dicated by ) are identical for the considered fractional
sample shifts τ

Ts
= 0.25, 0.50, 0.75. Although not shown

here, this is also the case for k < τ
Ts
< k+1 where k ∈ Z.1

This implies that the width of the sampled radial func-
tions generally deviate from 2r

c .

In Fig. 3, the spectra of the discrete-time radial functions
( ) are compared with the exact frequency-domain ra-
dial functions i−njn(ωc r) ( ) and the deviations ( ) are
depicted. Due to the non-causality of the representation
(2), an integer sample delay e−iωLfs (L fs > r

c , L ∈ Z+)
is applied to the complex spectra.

Figure 3(a) shows the 0th-order radial function for differ-
ent radii. The increase of spectral distortions is appar-
ent for smaller r, where more spectral components lie in
|ω| > πfs (|f | > 22.05 kHz) thus contributing to aliasing.

1One might argue that the sampled values should be determined
based on the nearest integer of τ

Ts
. This constitutes a 0th-order

interpolation which is subsumed under the approach introduced in
the next section.
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Figure 2: Sampling of (a) unit step function and
(b) BLEP function derived from a 5th-order Lagrange
polynomial. Different fractional sample shifts τ

Ts
=

0.25, 0.5, 0.75 are considered. The discrete-time samples
(tk = k · Ts) are indicated by .

While uniform sampling might be acceptable for large r,
care must be taken if the sound field is evaluated close to
the origin (small r). The slight boost around ω = πfs is
attributed to the nearest spectral repetitions occurring at
±2πfs. Since P0(·) = 1, cf. Fig. 1(b), the DC response is
determined by the width of the 0th-order radial function.
The distortions at ω → 0 thus result from the aforemen-
tioned deviations of the discontinuities. The latter also
lead to spectral zeros that differ from those of the ex-
act spectrum. Notice that the peaks of the distortion
coincide with the zeros of the spectrum.

The radial functions of different orders n = 1, 2, 3 are
shown in Fig. 3(b) for r = 0.1. At high frequencies, the
peak of the spectral distortions exhibits similar charac-
teristics (including the case of n = 0 shown in Fig. 3(a)).
Due to the zeros of the radial functions at ω = 0, the
lower spectrum is dominated by aliasing artifacts.

A trivial countermeasure against aliasing distortions is to
increase the sampling rate so that the repeated spectra
are sufficiently apart from each other. The spectral over-
lap is thereby reduced which further benefits from the
attenuation of the spherical Bessel functions for large ar-
guments [12, Eq. (10.52.3)]. This improvement, however,
comes at the expense of computations which scales with
the oversampling factor.

Band Limited Step Functions
Aliasing can be reduced more effectively by applying an
analytical low-pass filtering to continuous-time represen-
tations [14]. Once a band-limited radial function is ob-
tained in closed form, it can be sampled with reduced
spectral distortions. In this paper, the approach intro-
duced in [10, 11] is employed and adapted to the time-
domain radial functions.
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Figure 3: Frequency spectra of discrete-time radial
functions without bandwidth limitation.

Note from (4) that the 0th-order radial function can be
represented as a superposition of two unit step functions.
A single unit step function can be represented as the
running integral of the Dirac delta function [15, p. 93],

u(t− τ) =

∫ t

−∞
δ(t′ − τ)dt′ (7)

for an arbitrary time shift τ . Convolving both sides with
the impulse response of a low-pass filter h(t) yields

uh(t− τ) =

∫ t

−∞
h(t′ − τ)dt′, (8)

which is called the band-limited step (BLEP) function
defined as [9, 11, 14]

uh(t) := u(t) ∗t h(t) (9)

with ∗t denoting convolution.

Equation (8) states that a BLEP function uh(t) can be
obtained by integrating an appropriately chosen h(t).2
The impulse response h(t) should be piecewise continu-
ous and bounded so that the resulting BLEP function
(its integration) does not exhibit discontinuities. Other-
wise, the discretization would lead to aliasing artifacts as
observed in the previous section. To assure uh(∞) → 1,
the impulse response must satisfy

∫∞
−∞ h(t′)dt′ = 1.

As introduced in [14], BLEP functions can be derived
from interpolation polynomials. The impulse response
h(t) is expressed by piecewise polynomials within a finite
interval. Integrating the closed-form h(t) yields a BLEP
function whose transient response is also of finite length.
In this paper, BLEP functions based on Lagrange inter-
polation are used [10, 11]. For the sake of simplicity, only

2BLEP functions based on digital filters are also available [14],
where the integration is performed numerically. The scope of the
present paper is on continuous-time BLEP functions.
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Figure 4: Frequency spectra of band-limited discrete-
time radial functions. BLEP functions are derived from
5th-order Lagrange polynomials.

odd-order N interpolation is considered. Interested read-
ers are referred to the original articles [10, 11] for detailed
discussion.

In this approach, the band-limited impulse response h(t)
constitutes an interpolation of a discrete-time unit im-
pulse δ[k]. For the interval t ∈ [tk, tk+1], an Nth-order
interpolation exploits N + 1 samples (nodes),

δ[k − N−1
2 ], . . . , δ[k], δ[k + 1], . . . , δ[k + N+1

2 ] (10)

where N+1
2 samples lie on each side of t. The interpolated

signal hk(t) for this interval is a weighted sum of those
samples [16, p. 41],

hk(t) =
∑
l∈Sk

δ[l]
∏

m∈Sk\{l}

t− t̃m
t̃l − t̃m

=
∏

m∈Sk\{0}

t− t̃m
t̃0 − t̃m

=
∏

m∈Sk\{0}

m− t
Ts

m
(11)

where Sk := {k−N−1
2 , . . . , k+N+1

2 }. In the second equal-
ity, δ[k 6= 0] = 0 is exploited and (6) is used in the third
equality. Since hk(t) vanishes for 0 /∈ Sk, the impulse
response needs to be derived only for a finite number of
intervals,

h(t) =

{
hk(t), k ∈ [−N+1

2 , N+1
2 ]

0, otherwise,
(12)

where each hk(t) is a polynomial of orderN . The impulse
response thus has a finite extent, −N+1

2 < t
Ts
< N+1

2 , im-
plying that the bandwidth is not ideally limited. A thor-
ough discussion on the spectral properties of Lagrange
interpolators are found in [17].
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Expanding and integrating the factored form (11) reveals
the BLEP function which is a piecewise polynomial of
order N + 1. The integral constant in each interval has
to be determined in such a way that the BLEP function
is continuous [11]. Since the polynomial coefficients only
depend on the interpolation order N , they can be pre-
computed. Arbitrary time shift τ can be applied to the
BLEP function by substituting t with t−τ , while keeping
in mind that the individual intervals have to be shifted
accordingly, [tk + τ, tk+1 + τ ].

In Fig. 2(b), a BLEP function based on 5th-order La-
grange polynomial (BLEP function is of 6th order) is de-
picted. The jump discontinuities are modeled by smooth
transient responses with finite lengths. Notice that the
fractional sample shifts are appropriately modeled. Due
to the non-ideal band limitation, however, spectral dis-
tortions are to be expected.

Band Limited Radial Functions
A low-pass filtered 0th-order radial function can be rep-
resented by using BLEP functions,

c

2r
P̃0( cr t) ∗t h(t) =

c

2r

[
uh(t+ r

c )− uh(t− r
c )
]
. (13)

The discrete-time radial function is obtained by sampling
(13). The radial functions for higher orders n ≥ 1 are
then computed by using the recurrence relation of the
Legendre polynomials [12, Eq. (14.10.3)],

(n+ 2)Pn+2( cr t) =

(2n+ 3)( cr t)Pn+1( cr t)− (n+ 1)Pn( cr t). (14)

The improvements achieved by Lagrange BLEP functions
are demonstrated in Fig. 4. The 0th-order radial func-
tions are shown in Fig. 4(a) for different radii. In com-
parison with Fig. 3(a), spectral distortions are reduced in
the entire frequency band. Even for the smallest radius
r = 0.1, the spectral deviation remains below −60 dB up
to 10 kHz. Magnitude roll-offs occur at high frequencies
mainly due to the non-ideal low-pass filtering. The spec-
tral notches (zeros) are in close agreement with the exact
spectrum, implying that the width of the signal is mod-
eled accurately. For higher-order radial functions, shown
in Fig. 4(b), the improved accuracy at low frequencies
are noticeable. The peak envelope of aliasing spectrum
barely changes for the considered orders n ≤ 3.

Conclusion
In this paper, an approach for discrete-time modeling of
spherical harmonics expansion is introduced. In order to
reduce the spectral distortions caused by aliasing, an ana-
lytical low-pass filtering is applied to the continuous-time
radial functions, where the impulse response of the low-
pass filter is derived based on Lagrange polynomial inter-
polation. By sampling the band limited representations,
discrete-time radial functions are obtained with substan-
tially improved spectral accuracy. Numerical examples
show that 5th-order interpolation is able to achieve a
fairly good accuracy even for the most critical case (small
radius).
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