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1 Introduction
Wave Field Synthesis (WFS) [1] aims at a physically

accurate synthesis of a desired sound field inside a tar-
get region. Typically, the region is surrounded by a fi-
nite number of discrete loudspeakers. For practical loud-
speaker setups, this spatial sampling causes spatial alias-
ing artefacts and does not allow for an accurate synthesis
over the entire audible frequency range. Recently [2], the
authors published a geometric model to predict the so-
called aliasing frequency up to which the spatial aliasing
is negligible for a specific listening position or area. Opti-
mal discretisation schemes to increase this frequency for
a given array geometry and desired sound field assum-
ing omnidirectional loudspeakers were presented in [3].
This contribution extends the mentioned prior work by
studying the effect of directive actuators on the spatial
aliasing properties within the geometric framework. Af-
ter essential preliminaries have been clarified in Sec. 2,
the theory of the geometric model is extended towards
directive loudspeakers in Sec. 3. As a concrete example,
the aliasing frequency for a piston radiator is derived in
Sec. 4. Numerical simulations of the synthesised sound
fields are conducted in Sec. 5 to compare the discretisa-
tion patterns optimised for omnidirectional and directive
loudspeakers. A short conclusion is given, afterwards.

2 Mathematical Preliminaries
A sound pressure field p(x, t) is a scalar function de-

pending on position x and time t. Its temporal Fourier
transform P (x, ω) = AP (x, ω) e+jΦP (x,ω) is expressed by
its real-valued amplitude AP (x, ω) and phase ΦP (x, ω),
here. The radial frequency ω = 2πf is defined by the
temporal frequency f . For an arbitrary sound field ful-
filling the linear wave equation, the local wavenumber
vector is defined for e−jωt convention of the Fourier trans-
form as [4, Eq. (15)].

kP (x, ω) := −∇ΦP (x, ω) ≈ ω

c
k̂P (x, ω) . (1)

The speed of sound is denoted as c and is fixed to 343 m/s
for all simulations within this paper. The normalised
vector k̂P (x, ω) describes the local propagation direc-
tion of P (x, ω) at a given coordinate x. For elemen-
tary sound fields such as point and line sources, or plane
waves, kP (x, ω) fulfils the local dispersion relation, i.e.
its length is fixed to ω/c. For arbitrary sound fields, this
statement is true for asymptotically high frequencies [5,
Sec. 5.14].
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As a central concept of the upcoming derivations, the
one-dimensional Stationary Phase Approximation (SPA)
is used as an integral approximation. Given a complex-
valued function F (u) = AF (u)e+jΦF (u) with its phase
term rapidly oscillating compared to its slowly changing
amplitude, the following approximation of the integral [6,
Eq. (3.2)][7, Eq. (2.7.18)]∫ b

a

F (u)du ≈
∑

u∗∈[a,b]

F (u∗)

√
2π

|Φ′′F (u∗)|e
+jπ4 sgn(Φ′′F (u∗))

(2)
holds. It constitutes the summation over the station-
ary points u∗ in the interval [a, b], for which the first-
order derivative of the phase Φ′F (u∗) vanishes and the
second-order derivative Φ′′F (u∗) is non-zero. The integral
is approximately zero, if no stationary point is present
in [a, b]. For a rigorous derivation of the approximation,
see [6, Sec. II.3], or [7, Sec. 2.7]. In the context of linear
acoustics, the SPA generally becomes more accurate the
higher temporal frequency f and the distance between
sources and receivers.

3 Geometric Model for WFS with
Directive Secondary Sources
WFS is a well-known representative of methods for

Sound Field Synthesis (SFS), which pursue an accurate
synthesis of a virtual sound field S(x, ω) within a defined
region Ω, see Fig. 1. In 21/2-dimensional (2.5D) scenarios
[8, Sec. 2.3], Ω is a 2D area. Its boundary ∂Ω is de-
scribed as a curve x0 = x0(u) with u ∈ [umin, umax]. The
component-wise derivative of x0 w.r.t. u is denoted as
x′0. It is oriented along the unit tangent vector t0. The
inward pointing boundary normal vector n0 is perpen-
dicular to x′0 and t0. A distribution of loudspeakers is
positioned along ∂Ω as secondary sources (see the loud-
speaker symbols in Fig. 1) to synthesise S(x, ω). Con-
trary to own prior investigations [2, 3], the sound field
emitted by an individual secondary source is not mod-
elled as an omnidirectional point source, i.e. the free-
field 3D Green’s function. Instead, the sound radiation
is described by a suitable function GL(R0 (x − x0), ω).
The rotation matrix R0 = [n0,−t0] ensures that the ori-
entation of the secondary source along n0 is correctly in-
corporated. Each loudspeaker is driven by its respective
driving function D(x0, ω). The resulting wave field su-
perposition of all secondary sources constitutes the syn-
thesised sound field

P (x, ω) =

umax∫
umin

D(x0, ω)GL(R0 (x− x0), ω) |x′0|du , (3)
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which is supposed to coincide with S(x, ω) within Ω.
The generic 2.5D WFS driving function and approx-

imate solution of the integral is given by [2, Eq. (8b)]

D(x0, ω) = aS(x0)

√
j
ω

c

√
8πd(x0)nT

0 k̂S(x0, ω)S(x0, ω) .

(4)
The secondary source selection criterion aS(x0) [4,
Eq. (46)] activates only the secondary sources that are
oriented along the propagation direction of the virtual
sound field. Within this paper, the support [umin, umax]
already incorporates the selection and all secondary
sources described by the curve are assumed to be active.
As one systemic artefact in 2.5D synthesis, an inevitable
mismatch between the amplitude decay of the synthe-
sised and the virtual sound field occurs. The function
d(x0) can be used to reference the synthesised sound field
to a given contour/location on/at which its amplitude is
correct. For more details, see [4].

The practical implementation of WFS implies the dis-
cretisation of the continuous Secondary Source Distribu-
tion (SSD) as the distance between adjacent loudspeak-
ers cannot be chosen arbitrarily small. For a uniform
sampling w.r.t. u the synthesised sound field in (3) is
approximated by [3, Eq. (4)]

P (x, ω) ≈ P S(x, ω) = (5)
N0−1∑
n=0

D(x
(n)
0 , ω)GL(R

(n)
0 (x− x

(n)
0 ), ω)|x′(n)

0 |∆u ,

where the superscript (n) denotes the respective quantity
being evaluated at u = n∆u +umin. The u-domain sam-
pling distance is defined as ∆u = umax−umin/(N0−1) with
N0 as the number of secondary sources. It was shown in
[2], that the sound field synthesised by the discrete SSD
can be separated into its aliasing components

P S
η (x, ω) = (6)
umax∫
umin

D(x0, ω)GL(R0 (x− x0), ω) e−j2πη u
∆u |x′0|du ,

where η enumerates these components. With the WFS
driving function in (4) and amplitude-phase notation of
the virtual sound field, the phase term necessary for the
SPA of (6) reads

Φ(u) = ΦS(x0, ω) + ΦGL(R0 (x− x0), ω)− 2πη

∆u
u . (7)

Using chain and product rule of differentiation allows to
formulate the first-order derivative of the phase term as

∂Φ(u)

∂u
= −2πη

∆u
+
〈
∇ΦS(x0, ω)

∣∣∣x′0〉 (8)

+
〈
∇ΦGL(R0 (x− x0), ω)

∣∣∣R′0(x− x0)−R0x
′
0

〉
.

The operator 〈·|·〉 denotes the scalar a.k.a. dot product of
two vectors. The element-wise derivative of the rotation
matrix w.r.t. u reads R′0. Setting (8) to zero, solving

S(x, ω)

∂Ω Ω

n0(u)

t0(u)x0(u)
GL(R0 (x− x0), ω)

Figure 1: Geometry for Wave Field Synthesis

it for the temporal frequency f , and taking the mini-
mum of |f | over all non-zero η, yields the so-called spa-
tial aliasing frequency fS(x0,x) [2, Eq. (35)]. It defines
the frequency, up to which the secondary source at x0

does not contribute a considerable amount of aliasing to
the position x. However, without further assumptions or
knowledge about functional relations between f , ΦS , and
ΦGL

(8) cannot be solved for f . In [2, 3], the propaga-
tion direction of the virtual sound field is assumed to be
frequency independent, i.e. ∇ΦS(x0, ω) := −ωc k̂S(x0).
For the ΦGL , the according considerations are presented
for the piston model in the upcoming section.

4 Aliasing Frequency for Piston Radiator
A uniformly vibrating membrane is an extensively

studied model [9, Secs. 2.11.5/4.6.3/6.7.10] to describe
the directive sound radiation of a loudspeaker. Hence,
it will be exemplarily considered for GL(x, ω). In order
to incorporate the piston model into the estimation of
the aliasing frequency, the SPA is applied to the under-
lying integral. Derivations are presented only for one-
dimensional membranes along a line as the synthesis sce-
nario is restricted to the horizontal plane. The calculus
can however be extended towards surfaces using the mul-
tidimensional SPA [7, Sec. 2.7].

The membrane shape is described as a curve xs = xs(v)
depending on the parameter v ∈ [vmin, vmax] with the ac-
cording derivative x′s, tangent ts, see Fig. 2a. The sound
field radiated by the membrane is given by

GL(x, ω) =

vmax∫
vmin

e−jωc |x−xs(v)|

4π|x− xs(v)| |x
′
s(v)|dv . (9)

It states a distribution of uniformly driven spherical
monopoles along the curve. The integral is solved us-
ing the SPA in (2). Setting the first-order derivative of
the involved phase term Φ(v) = −ωc |x − xs(v)| to zero
results in

∂Φ(v)

∂v
=
ω

c

〈
x′s(v)

∣∣∣∣ x− xs(v)

|x− xs(v)|

〉
!
= 0 . (10)

As x′s aligns with ts, the equation requires (x−xs) to be
perpendicular to the curve. For a given x, the stationary
point x∗s (x) = xs(v

∗(x)) is the orthogonal projection of x
onto the curve. Due to the finite length of the curve, sta-
tionary points do only exist for x inside the grey shaded
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Figure 2: (a) depicts a uniformly driven curved piston (black) line. (b) shows a circular piston of radius RC and half-opening
angle φC . In (c), the geometry for the spatial aliasing frequency at a single position x and a virtual point source (grey dot) is
depicted: The grey shaded area marks the positions x for which the sound pressure GC(R0 (x− x0), ω) is non-zero sound.

area depicted in Fig. 2a. For these x, the SPA of (9) is
given by

GL(x, ω) ≈
√

2π

jωc

√
ρ∗s (x) |x− x∗s (x)|
ρ∗s (x) + |x− x∗s (x)|

e−jωc |x−x∗s (x)|

4π|x− x∗s (x)| ,

(11)
where ρ∗s (x) denotes the radius of curvature at xs(v

∗).
It can be inferred from the phase term ΦGL

(x, ω) =
−ωc |x−x∗s (x)|, that the propagation direction of the pis-
ton is indeed frequency independent and ∇ΦGL(x, ω) =
ω
c k̂GL

(x). Thus, the aliasing frequency can be straight-
forwardly determined via (8) for arbitrary piston shapes.

As a concrete example for a membrane, a circular arc
centred at the origin with a half-opening angle of φC and
a radius of RC is chosen, see Fig. 2b. For this case, |x−
x∗s (x)| = |x|−RC and ρ∗s (x) = RC and the sound pressure
specialises to

GC(x, ω) ≈


√

2π
jωc

√
RC
|x|

e−jω
c

(|x|−RC)

4π
√
|x|−RC

, if |φ| ≤ φC ,
0 , otherwise.

(12)
Thus, the area of non-zero pressure is defined via the
half-opening angle φC . For the non-zero case, the phase
term and its gradient are given as ΦGC (x) = −ωc (|x| −
RC) and ∇ΦGC (x) = −ωc x

|x| . Inserting the latter term

together with ∇ΦS(x0, ω) = −ωc k̂S(x0) into (8), allows
to formulate the aliasing frequency as [2, Eqs. (35)]

fS(x0,x) =
c

∆u|x′0(u)||k̂S,t0
(x0)− k̂G,t0

(x− x0)|
, (13)

The explanatory geometry is shown in Fig. 2c: k̂S,t0
(x0)

denotes the tangential component of the normalised
wavenumber vector k̂S for the virtual sound field. It is
equal to the cosine of the angle between the tangent t0

and the propagation direction of the virtual sound field
at x0. k̂G,t0

(x − x0) denotes the tangential component
of the normalised wavenumber vector k̂G of the Green’s
function. It is equal to the cosine of the angle between
t0 and x− x0.

The formula for the aliasing frequency in (13) is the
same as for the omnidirectional case [2, Eq. (35)], but it
has to be further taken into account, that the secondary

source only contributes aliasing to x, if its directivity is
non-zero, see grey-shaded area in Fig. 2c. This finally
leads to

fS
C (x0,x) =

{
fS(x0,x) , if GC(R0 (x− x0), ω) 6= 0

∞ , otherwise,
(14)

as the aliasing frequency incorporating the restricted ra-
diation range of the circular arc piston. Since fS

C (x0,x) ≥
fS(x0,x), it is obvious, that the additional directivity po-
tentially leads to a stronger suppression of aliasing. One
may further define [2, Eq. (38)]

fS
C (x0) = min

x∈Ωl

fS
C (x0,x) (15)

as the aliasing frequency for an extended region Ωl in-
stead of the single position x. In [3, Sec. 4.2], a method
to maximise the overall aliasing frequency, i.e. the mini-
mum of fS

C (x0) over all active secondary sources, by ad-
justing the spatial sampling of the SSD for a given N0.
For this, the equation [3, Eqs. (14)/(15)]

n

∫ umax

umin

1

fS
C (x0(µ))

dµ = (N0 − 1)

∫ uopt(n)

umin

1

fS
C (x0(µ))

dµ

(16)
is solved for uopt(n) by combining numerical integration
and root finding algorithms. The resulting optimised po-
sitions are given by x0(uopt(n)).

5 Simulations
The derived aliasing frequency for the circular arc po-

sition will be compared to the omnidirectional case us-
ing exemplary numerical simulations of the synthesised
sound fields. Furthermore, the effect of differently opti-
mised SSD spacings is shown. A virtual point source at
xps = [0, 2.5, 0]T m is synthesised by a linear SSD of 3m
length, see black dots in Fig. 3. For the circular arc pis-
ton, an half opening angle of 30◦ is chosen. The region
of interest Ωl, for which the aliasing frequencies are op-
timised, is defined as a circular area (red). As shown in
Fig. 3a and 3b, the directivity leads to an improvement
of the spatial aliasing even for the uniform discretisa-
tion pattern. However, strong artefacts inside the red
circle are observable in the synthesised sound field for
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Figure 3: The plots in the top row illustrate a monochromatic (f = 2 kHz) virtual point source at xps = [0, 2.5, 0]T m
synthesised by a linear SSD (N0 = 21, black dots) with different spacing patterns. The directivity of the secondary source
and sampling optimisation strategy are given in title. The circular area Ωl located at [−0.5, 0, 0]T m with a radius of 0.25m is
indicated by the red circle. The black line indicate position where the aliasing frequency is equal to 2 kHz. This frequency is
shown in the bottom plots in more detail. A discrete colormap is used for better visibility.

both secondary source types. Fig. 3c and 3d show the
results for the SSD spacing optimised w.r.t. the omnidi-
rectional aliasing frequency defined by (13): The SSD is
less densely sampled in middle of the distribution. Com-
pared to the respective aliasing frequency for the uni-
form case, an increase about a factor of ≈ 1.5 inside Ωl is
achieved. The spacing is further optimised for the direc-
tive case using (14) as the criterion. It can be observed
in Fig. 3e, that a large gap in the SSD is present on its
right-hand side. This is reasonable as the opening an-
gle of circular arc piston is small enough, that secondary
sources in this part do not affect Ωl. Thus, the gap allows
to the increase increase the density of the more relevant
left-hand side of the array. Compared to the uniform
sampling, an increase of the aliasing frequency about the
factor of ≈ 2.2 is achieved.

6 Conclusion
This paper investigated on the connection between the

directivity of the secondary sources involved in WFS
and spatial aliasing artefacts occurring in the synthesised
sound field. A geometric model to predict spatial alias-
ing was extended towards directive actuators allowing
for a more accurate prediction of the aliasing frequency.
The numerical simulations confirm, that optimised SSD
design can be further improved by considering the direc-
tional properties of the deployed loudspeakers. As the
involved approximations of the piston radiator model led
to rather simplistic radiation properties, future work has
to incorporate the effect of more complex and frequency-
dependent directivity patterns. Moreover, the combina-
tion of SSD spacing and array curvature has to be dis-
cussed within the geometric framework.
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