Radio Navigation and Radar

1. Exercise

Prof. Dr.-Ing. habil. Tobias Weber

December 5, 2022 Universität Rostock

1. Problem

a) Show that

$$\mathcal{F}^{-1}(\operatorname{sign}(\omega)) = \frac{\mathrm{j}}{\pi t}$$

holds for the inverse Fourier transform of the sign-function.

The Hilbert transform of a(t) is defined as

$$\hat{a}(t) = \mathcal{H}(a(t)) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{a(\tau)}{t - \tau} \,\mathrm{d}\tau.$$

b) Show that

$$\mathcal{H}^{-1}(\hat{a}(t)) = -\mathcal{H}(\hat{a}(t))$$

holds for the inverse Hilbert transform.

c) Determine the Hilbert Transform $\hat{a}(t)$ and the analytic signal $a(t) + j\hat{a}(t)$ of

$$a(t) = \operatorname{si}\left(\frac{\pi t}{T}\right).$$

d) Let a(t) be a bandpass signal and $\underline{s}(t)$ be its equivalent lowpass signal. Show that the low frequency component of $a(t)\sqrt{2}e^{-j\omega_0 t}$ corresponds to $\underline{s}(t)$.

2. Problem

In some radar applications it is a priori known that the spectrum $\underline{S}(\omega)$ of the equivalent lowpass signal $\underline{s}(t)$ is zero for positive frequencies ω . In such situations one may save hardware complexity in the demodulator by using only a single mixer and thus only obtaining the real part $\operatorname{Re}(\underline{s}(t))$ of the equivalent lowpass signal $\underline{s}(t)$. How can one reconstruct the imaginary part $\operatorname{Im}(\underline{s}(t))$ of the equivalent lowpass signal $\underline{s}(t)$ using the Hilbert-transform in this situation?