Radio Navigation and Radar

3. Exercise

Prof. Dr.-Ing. habil. Tobias Weber

January 13, 2023
Universität Rostock

1. Problem

Let $\underline{s}(t)$ be a lowpass signal with the equivalent bandpass signal

$$
a(t)=\sqrt{2} \operatorname{Re}\left(\underline{s}(t) \mathrm{e}^{\mathrm{j} \omega_{0} t}\right) .
$$

a) Show that $\underline{s}^{*}(-t)$ is the equivalent lowpass signal of the mirrored bandpass signal $a(-t)$.

Let $\underline{s}_{1}(t)$ and $\underline{s}_{2}(t)$ be two lowpass signals with the equivalent bandpass signals $a_{1}(t)$ and $a_{2}(t)$, respectively.
b) Show that the lowpass signal $\underline{s}(t)$ being equivalent to the bandpass signal

$$
a(t)=a_{1}(t) * a_{2}(t)
$$

can be calculated as

$$
\underline{s}(t)=\frac{1}{\sqrt{2}} \underline{s}_{1}(t) * \underline{s}_{2}(t)
$$

The correlation function of the lowpass signal $\underline{s}(t)$ reads

$$
\underline{R}_{\mathrm{ss}}^{\mathrm{E}}(t)=\int \underline{s}^{*}(\tau) \underline{s}(\tau+t) \mathrm{d} \tau
$$

c) Determine the correlation function $R_{\mathrm{aa}}^{\mathrm{E}}(t)$ of the equivalent bandpass signal $a(t)$ as a function of the correlation function $\underline{R}_{\mathrm{ss}}^{\mathrm{E}}(t)$ and ω_{0}. You may exploit the fact that the correlation can be expressed using the convolution.

2. Problem

A two dimensional scenario is considered, see figure. For simplicity, the coordinates are chosen such that the two fixed points lie on the x-axis at $-\xi$ and $+\xi$. Show that the positions of constant range difference Δr lie on a hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 .
$$

Determine the parameters a and b of the hyperbola as functions of ξ and Δr. Determine the angle α of the asymptote as a function of ξ and Δr.

3. Problem

In the following a two dimensional bistatic radar scenario is considered, see figure. For simplicity, the coordinates are chosen such that the transmitter and the receiver lie on the x-axis at $-\xi$ and $+\xi$, respectively. Which geometrical shape do the target positions of constant total path length

$$
r=r_{1}+r_{2}
$$

with r_{1} being the path length from the transmitter to the target and r_{2} being the path length from the target to the receiver form? Determine the equation with the parameters ξ and r which the possible target positions fulfill.

