Radio Navigation and Radar

7. Exercise

Prof. Dr.-Ing. habil. Tobias Weber

December 5, 2022 Universität Rostock

1. Problem

In the following a linear Gaussian model

$$y = H \cdot x + n$$

is considered. Let

$$\mathbf{R}_{xx} = \mathrm{E} \big\{ \mathbf{x} \cdot \mathbf{x}^{\mathrm{T}} \big\}$$

be the correlation matrix of the zero mean parameter vector \mathbf{x} and let

$$\mathbf{R}_{\mathrm{nn}} = \mathrm{E} \Big\{ \mathbf{n} \cdot \mathbf{n}^{\mathrm{T}} \Big\}$$

be the correlation matrix of the zero mean noise \mathbf{n} .

a) Compute the linear minimum mean square error estimate $\hat{\mathbf{x}}_{LMMSE}$ as a function of \mathbf{y} , \mathbf{H} , \mathbf{R}_{xx} , and \mathbf{R}_{nn} .

Let the prior probability density function be

$$p(\mathbf{x}) = \frac{1}{\sqrt{\det(2\pi \mathbf{R}_{xx})}} e^{-\frac{1}{2}\mathbf{x}^T \cdot \mathbf{R}_{xx}^{-1} \cdot \mathbf{x}}$$

and let the likelihood function be

$$p(\mathbf{Y}|\mathbf{x}) = \frac{1}{\sqrt{\det(2\pi \mathbf{R}_{nn})}} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{H} \cdot \mathbf{x})^T \cdot \mathbf{R}_{nn}^{-1} \cdot (\mathbf{y} - \mathbf{H} \cdot \mathbf{x})}.$$

- b) Determine the posterior probability density function $p(\mathbf{x}|\mathbf{y})$.
- c) Show that the maximum a posteriori estimate

$$\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x}}{\operatorname{arg\,max}} \{ p(\mathbf{x}|\mathbf{y}) \}$$

is equal to the minimum mean square error estimate $\hat{\mathbf{x}}_{\text{LMMSE}}$.

2. Problem

A linear dynamical system model with the observation equation

$$\mathbf{y}(n) = \mathbf{G}(n) \cdot \mathbf{x}(n) + \mathbf{v}(n)$$

is considered. Let

$$\mathbf{R}_{vv}(n) = \mathbf{E} \{ \mathbf{v}(n) \cdot \mathbf{v}(n)^{\mathrm{T}} \}$$

be the correlation matrix of the zero mean observation noise $\mathbf{v}(n)$ and

$$\mathbf{R}_{\mathrm{xx}}(n|n-1) = \mathrm{E}\left\{ \left(\hat{\mathbf{x}}(n|n-1) - \mathbf{x}(n)\right) \cdot \left(\hat{\mathbf{x}}(n|n-1) - \mathbf{x}(n)\right)^{\mathrm{T}} \right\}$$

be the correlation matrix of the prediction error $\hat{\mathbf{x}}(n|n-1) - \mathbf{x}(n)$.

a) The estimate is computed as

$$\hat{\mathbf{x}}(n|n) = \hat{\mathbf{x}}(n|n-1) + \mathbf{K}(n) \cdot (\mathbf{y}(n) - \mathbf{G}(n) \cdot \hat{\mathbf{x}}(n|n-1)).$$

Determine $\mathbf{K}(n)$ in such a way that the mean square error $\mathrm{E}\{\|\hat{\mathbf{x}}(n|n) - \mathbf{x}(n)\|^2\}$ is minimized.

b) Show that the correlation matrix

$$\mathbf{R}_{xx}(n|n) = \mathrm{E}\left\{ (\hat{\mathbf{x}}(n|n) - \mathbf{x}(n)) \cdot (\hat{\mathbf{x}}(n|n) - \mathbf{x}(n))^{\mathrm{T}} \right\}$$

of the estimation error $\hat{\mathbf{x}}(n|n) - \mathbf{x}(n)$ can be computed as

$$\mathbf{R}_{xx}(n|n) = (\mathbf{I} - \mathbf{K}(n) \cdot \mathbf{G}(n)) \cdot \mathbf{R}_{xx}(n|n-1) \cdot (\mathbf{I} - \mathbf{K}(n) \cdot \mathbf{G}(n))^{\mathrm{T}} + \mathbf{K}(n) \cdot \mathbf{R}_{yy}(n) \cdot \mathbf{K}^{\mathrm{T}}(n).$$

This numerically more stable form is known as Joseph's form.