1. Problem

a) Show that
\[\mathcal{F}^{-1}(\text{sign}(\omega)) = \frac{j}{\pi t} \]
holds for the inverse Fourier transform of the sign-function!

The Hilbert transform of \(a(t) \) is defined as
\[\hat{a}(t) = \mathcal{H}(a(t)) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{a(\tau)}{t-\tau} \, d\tau. \]

b) Show that
\[\mathcal{H}^{-1}(\hat{a}(t)) = -\mathcal{H}(\hat{a}(t)) \]
holds for the inverse Hilbert transform!

c) Determine the Hilbert Transform of
\[a(t) = \text{si} \left(\frac{\pi t}{T} \right) ! \]

d) Let \(a(t) \) be a bandpass signal and \(\underline{s}(t) \) be its equivalent lowpass signal. Show that the low frequency component of \(a(t) \sqrt{2} e^{-j\omega_0 t} \) corresponds to \(\underline{s}(t) \)!
2. Problem

Determine the time-bandwidth product of the triangular pulse

\[\mathcal{g}(t) = \Lambda(t). \]