

Mobilkommunikation

Prof. Dr.-Ing. habil. Tobias Weber

5,80 5(1) 0 5

Inhalt

- Einleitung
- <u>Modellierung</u>

• Kanalkapazität

- Deterministische Kanalmodelle
- <u>Stochastische Kanalmodelle</u>
- Kanalschätzen
- Datendetektion
- <u>Vorcodieren</u>
- <u>Diversität</u>

Literatur

- Nachrichtentechnische Grundlagen
 - K.-D. Kammeyer: Nachrichtenübertragung. 5. Auflage, Wiesbaden: Vieweg+Teubner Verlag, 2011, ISBN 978-3-8348-0896-7.
 - J. Proakis, M. Salehi: *Digital Communications*. 5. Auflage, New York, NY: McGraw-Hill, 2008, ISBN 978-007-126378-8.
 - P. Tran-Gia: *Einführung in die Leistungsbewertung und Verkehrstheorie*. 2. Auflage, München: Oldenbourg Wissenschaftsverlag, 2005, ISBN 978-3-486-57882-9.
- Mobilkommunikation
 - A. Goldsmith: *Wireless Communications*. New York, NY: Cambridge University Press, 2005, ISBN 978-0-521-83716-3.
 - A. F. Molisch: *Wireless Communications.* 2. Auflage, Chichester, UK: John Wiley & Sons, 2011, ISBN 978-0-470-74186-3.
 - D. Tse, P. Viswanath: *Fundamentals of Wireless Communication*. Cambridge, UK: Cambridge University Press, 2005, ISBN 978-0-521-84527-4.

Einleitung

Beispiel: Systemarchitektur von GSM

GSM 01.02: General Description of a GSM Public Land Mobile Network (PLM)

Leitungsbündel

- *R* parallele Leitungen
 - \Rightarrow (*R*, *R*)-MIMO-System
- Kanalkapazität proportional zu R (bei fester Sendeleistung je Eingang)
- schlechte Abschirmung
 - \Rightarrow Übersprechen (Kreuzkoppeln)

Basistechniken im Mobilfunk

• Duplexverfahren:

Trennen der Nachrichtenübertragung in Abwärtsstrecke und Aufwärtsstrecke

• Vielfachzugriffsverfahren:

Trennen der Nachrichtenübertragung verschiedener Teilnehmer

• zellulares Konzept:

Wiederverwenden von Ressourcen in hinreichend großem räumlichen Abstand

Frequenzduplex, Frequency Division Duplex, FDD

- Abwärtsstrecke und Aufwärtsstrecke in unterschiedlichen Frequenzbändern
- Signalseparierung durch Filterung
- + kontinuierliches Senden und Empfangen möglich (wichtig bei analoger Übertragung)
- teure HF-Bauteile (Filter) benötigt
- feste Ressourcenaufteilung zwischen Abwärtsstrecke und Aufwärtsstrecke

Zeitduplex, Time Division Duplex, TDD

- Abwärtsstrecke und Aufwärtsstrecke zu unterschiedlichen Zeiten
- Signalseparierung durch Umschalten
- + billiger integrierbarer Umschalter
- + Kanalreziprozität nutzbar
- + direkte Kommunikation zwischen Mobilstationen möglich (Ad-hoc-Modus, Relays, Mesh Networks)
- + variable Ressourcenaufteilung zwischen Abwärtsstrecke und Aufwärtsstrecke
- in analogen Mobilfunksystemen nicht einsetzbar
- wegen benötigter Totzeiten nur bei nicht zu großen Entfernungen zwischen MS und BS einsetzbar
- BS-zu-BS-Interferenzen

Uhr in MS geht um Δt nach

- \Rightarrow MS muss um Timingadvance $2\Delta t$ "zu früh" zu senden beginnen
- \Rightarrow damit keine Überschneidung mindestens $T = 2\Delta t$ Totzeit

BS-zu-BS-Interferenz in TDD

- BSen an exponierten Standorten
 - ⇒ Sendesignale einer BS verursachen selbst an weit entfernten anderen BSen signifikante Empfangssignale
- große Laufzeiten zu weit entfernten BSen
 - ⇒ BS-zu-BS-Interferenzen treffen selbst bei Synchronisation des Netzes teilweise während der Empfangsphasen an weit entfernten BSen ein

gedächtnisloser (Markovscher) Ankunftsprozess

- im infinitesimalen Zeitintervall Δt wird mit der Wahrscheinlichkeit λΔt ein zu übertragendes Datenpaket erzeugt, λ ist die Ankunftsrate
- Wahrscheinlichkeit, dass in einem Zeitintervall der Dauer T genau k Datenpakete erzeugt werden:

Zwischenankunftszeit

- falls Zwischenankunftszeit $T_A \leq T$ tritt im Zeitintervall Tmindestens ein Ankunftsereignis auf: $\Pr{T_A \leq T} = 1 - \Pr{0} = 1 - e^{-\lambda T}$
- Wahrscheinlichkeitsdichtefunktion:

$$p(T_A) = \begin{cases} \lambda e^{-\lambda T_A} & T_A > 0\\ 0 & \text{sonst} \end{cases}$$
(Exponentialverteilung)

• Erwartungswert: $E\{T_A\} = \frac{1}{\lambda}$

kollisionsbasierter Vielfachzugriff, ALOHA

- alle Datenpakete haben gleiche Dauer $T_{\rm P}$
- keine Kollision falls im Zeitintervall der Dauer $T = 2T_P$ kein weiteres Datenpaket
- Erfolgswahrscheinlichkeit: $Pr\{0\} = e^{-\lambda_2 T_P}$

kollisionsbasierter Vielfachzugriff, S-ALOHA

- Datenpakete werden in festen Zeitschlitzen übertragen
 - \Rightarrow Reduktion der Kollisionswahrscheinlichkeit
- keine Kollision falls im Zeitintervall der Dauer $T = T_P$ kein weiteres Datenpaket
- Erfolgswahrscheinlichkeit:

 $\Pr\{0\} = e^{-\lambda T_{\rm P}}$

Analyse der Performanz von ALOHA und S-ALOHA

- Angebot, Paketankünfte während Paketdauer:
 - $A = \frac{T_{\rm P}}{{\rm E}\{T_{\rm A}\}} = \lambda T_{\rm P}$
- Durchsatz: $D = \Pr{0} A$
- ALOHA
 - $D = Ae^{-2A}$
 - $A_{\max} = 0.5$
 - $D_{\max} = 0,18$
- S-ALOHA
 - $D = Ae^{-A}$
 - $A_{\max} = 1$
 - $D_{\max} = 0.37$

Frequenzmultiplex, Frequency Division Multiplexing, FDMA

jeder Teilnehmer erhält ein eigenes Frequenzband

- Signalseparierung durch Filterung
- Datenrate je Teilnehmer: $R_{\rm U} \approx B_{\rm U} = \frac{B}{\kappa}$
- Gesamtdatenrate: $R = KR_{\rm U} \approx B$

Zeitmultiplex, Time Division Multiplexing, TDMA

- jeder Teilnehmer erhält einen eigenen Zeitschlitz
- Signalseparierung durch zeitliches Fenstern
- Datenrate je Teilnehmer: $R_{\rm U} \approx \frac{T_{\rm U}}{T} B = \frac{B}{K}$
- Gesamtdatenrate: $R = KR_{\rm U} \approx B$

Codemultiplex, Code Division Multiplexing, CDMA

- jeder Teilnehmer nutzt eine individuelle Signatur (Code)
- Signalseparierung prinzipiell möglich
- Zeit-Bandbreite-Produkt der Signaturen: $BT \approx K$ \Rightarrow Spreizung
- Datenrate je Teilnehmer: $R_{\rm U} \approx \frac{B}{\kappa}$
- Gesamtdatenrate: $R = KR_{\rm U} \approx B$

Beispiel: Vielfachzugriff und Duplex in GSM

GSM 05.02: Multiplexing and multiple access on the radio path

M/M/K-Verlustsystem

- Kendall-Notation:
 - gedächtnisloser (**M**arkovscher) Ankunftsprozess, exponentialverteilte Zwischenankunftszeit T_A , Ankunftsrate λ
 - gedächtnisloser (**M**arkovscher) Bedienprozess, exponentialverteilte Bedienzeit $T_{\rm B}$, Bedienrate μ
 - K Bedieneinheiten, Ressourcen
- Angebot $A = \frac{E\{T_B\}}{E\{T_A\}} = \frac{\lambda}{\mu}$
- Zustand k: Anzahl der belegten Ressourcen

Theorem von Little

- Anzahl der im Zeitintervall der Dauer T eingetroffenen Anforderungen: N
- Zwischenankunftszeit: T_A
- Bedienzeit: T_B
- Anzahl der Anforderungen im System: k (hängt vom Zeitpunkt t ab)

Gleichgewichtsbedingung

Gleichgewichtsbedingung: $P_k(t + \Delta t) = P_k(t) = P_k$

$$\Rightarrow P_k = P_{k,1}(\Delta t)P_1 + \dots + P_{k,k}(\Delta t)P_k + \dots + P_{k,K}(\Delta t)P_K = P_{k,1}(\Delta t)P_1 + \dots + P_{k,k-1}(\Delta t)P_{k-1} + (1 - \sum_{l \neq k} P_{l,k}(\Delta t))P_k + P_{k,k+1}(\Delta t)P_{k+1} + \dots + P_{k,K}(\Delta t)P_K$$

 $\sum_{l \neq k} P_{l,k}(\Delta t) P_k = \sum_{l \neq k} P_{k,l}(\Delta t) P_l$

Gleichgewichtsbedingung für Makrozustände

- die Zustandsmenge K bildet einen Makrozustand
- Aufaddieren der Gleichgewichtsbedingen aller Zustände $k \in \mathbb{K}$ des Makrozustands liefert: $\sum_{k \in \mathbb{K}} \sum_{l \neq k} P_{l,k}(\Delta t) P_k = \sum_{k \in \mathbb{K}} \sum_{l \neq k} P_{k,l}(\Delta t) P_l$

$$\sum_{k \in \mathbb{K}} \sum_{l \notin \mathbb{K}} P_{l,k}(\Delta t) P_k = \sum_{k \in \mathbb{K}} \sum_{l \notin \mathbb{K}} P_{k,l}(\Delta t) P_l$$

Nur die Beiträge der Übergänge über die Grenze des Makrozustands hinweg kürzen sich nicht weg!

Analyse des M/M/*K*-Verlustsystems

- stationäre Zustandsverteilung, Gleichgewichtsbedingung: $\lambda P_{k-1} = k\mu P_k \Rightarrow P_k = \frac{A}{k}P_{k-1}$
- sukzessives Einsetzen ergibt:

$$P_k = \frac{A^k}{k!} P_0$$

• Vollständigkeitsbedingung, Summe aller Wahrscheinlichkeiten muss eins sein: $\sum_{k=0}^{K} P_k = P_0 \sum_{k=0}^{K} \frac{A^k}{k!} = 1 \Longrightarrow P_0 = \frac{1}{\sum_{k=0}^{K} \frac{A^k}{k!}}$

Zustandswahrscheinlichkeiten des M/M/K-Verlustsystems Erlang-B-Formel: $P_k = \frac{A^k}{k!} / \sum_{k=0}^{K} \frac{A^k}{k!}$

K = 30 Bedieneinheiten

Performanz des M/M/K-Verlustsystems

Blockierwahrscheinlichkeit, Erlang-Verlustformel:

 $P_{\rm B} = P_K = \frac{A^K}{K!} / \sum_{k=0}^{K} \frac{A^k}{k!}$

- mittlere Anzahl belegter Ressourcen, Verkehrswert: $E\{k\} = A(1 - P_B)$
- Auslastung: $\frac{E\{k\}}{K} = \frac{A(1-P_B)}{K}$
- Bündelungsgewinn:
 bei größeren
 Ressourcenanzahlen
 K bessere
 Auslastung möglich

M/M/*K*-Wartesystem

- Warteschlange unendlicher Kapazität
 - \Rightarrow keine Verluste aber möglicherweise sehr lange Wartezeiten
- aktuelle Warteschlangenlänge: Q
- Anzahl der Bedieneinheiten: K
- Zustand k: Gesamtanzahl der Anforderungen im System

Analyse des M/M/*K*-Wartesystems (1)

Angebot:

$$A = \frac{\lambda}{\mu}$$
, für $A \ge K$ instabil!

• stationäre Zustandsverteilung, Gleichgewichtsbedingung: für k = 1...K - 1 $\lambda P_{k-1} = k\mu P_k \implies P_k = \frac{A}{k}P_{k-1}$ für $k \ge K$ $\lambda P_{k-1} = K\mu P_k \implies P_k = \frac{A}{K}P_{k-1}$

Analyse des M/M/*K*-Wartesystems (2)

sukzessives Einsetzen ergibt:

$$P_{k} = \begin{cases} P_{0} \frac{A^{k}}{k!} & k < K \\ P_{0} \frac{A^{K}}{K!} \left(\frac{A}{K}\right)^{k-K} = P_{K} \left(\frac{A}{K}\right)^{k-K} & k \ge K \\ \hline \text{geometrische Restverteilung} & k \ge K \end{cases}$$

• Vollständigkeitsbedingung, Summe aller Wahrscheinlichkeiten muss eins sein: $\sum_{k=0}^{\infty} P_k = P_0 \left(\sum_{k=0}^{K-1} \frac{A^k}{k!} + \sum_{k=K}^{\infty} \frac{A^K}{K!} \left(\frac{A}{K} \right)^{k-K} \right) = P_0 \left(\sum_{k=0}^{K-1} \frac{A^k}{k!} + \frac{A^K}{K!} \frac{K}{K-A} \right) = 1$ $\Rightarrow P_0 = \frac{1}{\sum_{k=0}^{K-1} \frac{A^k}{k!} + \frac{A^K}{K!} \frac{K}{K-A}}$

Zustandswahrscheinlichkeiten des M/M/K-Wartesystems

Anzahl der Bedieneinheiten: K = 10

geometrische Restverteilung $\downarrow\downarrow$ linearer Abfall für $k \ge K$ in logarithmischer Darstellung

Wartewahrscheinlichkeit

- Erlang-Warteformel, Erlang-C-Formel: $P_{W} = \sum_{k=K}^{\infty} P_{k} = \sum_{k=K}^{\infty} P_{K} \left(\frac{A}{K}\right)^{k-K}$ $= P_{K} \frac{K}{K-A}$ $= \frac{\frac{A^{K} K}{K-A}}{\sum_{k=0}^{K-1} \frac{A^{k}}{k!} + \frac{A^{K} K}{K!K-A}}$
- mittlere Warteschlangenlänge: $E\{Q\} = \sum_{k=K}^{\infty} (k - K)P_k$ $= P_W \frac{A}{K-A}$

zellulares Konzept

Clustergröße r, (Reuse-Faktor 1/r):

- Frequenzband in *r* Teilfrequenzbänder unterteilt
- jede Zelle nutzt genau eines dieser *r* Teilfrequenzbänder
- falls sich eine MS in eine Nachbarzelle bewegt erfolgt ein Handover
- Theorie: sechseckige Zellen, BS jeweils in der Mitte der Zelle

regelmäßige Frequenznutzungsmuster

• Es sind nur bestimmte Clustergrößen entsprechend den rhombischen Zahlen möglich:

 $r = i^2 + j^2 + ij, i, j \in \mathbb{N}_0, i + j > 0$

r = 1; 3; 4; 7; 9; 12; ...

 Es gibt stets sechs nächste Gleichkanalzellen.

Beispiel:

i = 2 j = 1 $\Rightarrow r = 7$

Freiraumausbreitung

Dämpfungsexponent: $\alpha = 2$

Wegen typischerweise indirekter Funkwellenausbreitung in Mobilfunkszenarien realitätsfernes Ausbreitungsmodell!

Zweiwegeausbreitungsmodell

beide Pfade 1 und 2 haben ungefähr die selbe Länge

$$\Rightarrow$$
 Funkfeldgewinne der Pfade $\frac{P_{1,2}}{P_{Tx}} = \left(\frac{\lambda}{4\pi r}\right)^2$

- Einfallswinkel fast 90°
 - \Rightarrow 180° Phasensprung bei Totalreflexion an Dielektrikum (beziehungsweise Reflexion an idealem Leiter bei horizontaler Polarisation)

Analyse der Zweiwegeausbreitung

• Pfadlängendifferenz:

$$\Delta r = \sqrt{(h_{\rm Tx} + h_{\rm Rx})^2 + r^2} - \sqrt{(h_{\rm Tx} - h_{\rm Rx})^2 + r^2} \approx \frac{2h_{\rm Tx}h_{\rm Rx}}{r}$$

• Phasenverschiebung:

$$\Delta \varphi = 2\pi \frac{\Delta r}{\lambda} = 4\pi \frac{h_{\rm Tx} h_{\rm Rx}}{r\lambda}$$

resultierender Funkfeldgewinn:

$$g = \frac{P_{Rx}}{P_{Tx}} = \left(\frac{\lambda}{4\pi r}\right)^2 \left|1 - e^{-j\Delta\varphi}\right|^2 = \left(\frac{\lambda}{4\pi r}\right)^2 4\sin^2\left(\frac{\Delta\varphi}{2}\right) = \left(\frac{\lambda}{2\pi r}\right)^2 \sin^2\left(2\pi \frac{h_{Tx}h_{Rx}}{r\lambda}\right)$$

Einhüllende für kleine Entfernungen *r*:

$$g = \left(\frac{\lambda}{2\pi r}\right)^2 \Rightarrow D$$
ämpfungsexponent $\alpha = 2$

Näherung für große Entfernungen *r*: $g = \frac{h_{Tx}^2 h_{Rx}^2}{r^4} \Rightarrow Dämpfungsexponent \alpha = 4$

Funkfeldgewinn bei Zweiwegeausbreitung

Beispiel: f = 2,4 GHz $\lambda = 12,5$ cm $h_{\rm Tx} = 10 {\rm m}$ $h_{\rm Rx} = 1 \, {\rm m}$ $g_{\mathrm{Tx}} = g_{\mathrm{Rx}} = 1$

$$\left(\frac{\lambda}{2\pi r_0}\right)^2 = \frac{h_{\text{Tx}}^2 h_{\text{Rx}}^2}{r_0^4} \Rightarrow r_0 = \frac{2\pi h_{\text{Tx}} h_{\text{Rx}}}{\lambda}, \text{ hier } r_0 = 502,7 \text{ m}$$

Modellierung

Bandpass-Tiefpass-Transformation

Wegen der Symmetrie $\underline{A}(-f) = \underline{A}^*(f)$ des Spektrums $\underline{A}(f)$ eines reellen Zeitsignals a(t) ist die gesamte Information in einer Hälfte des Spektrums $\underline{A}(f)$ enthalten!

Quadraturmodulator

 $a(t) = \sqrt{2} \operatorname{Re}\left(\underline{u}(t) e^{j2\pi f_0 t}\right)$ = $\sqrt{2} u_{\mathrm{R}}(t) \cos(2\pi f_0 t) - \sqrt{2} u_{\mathrm{I}}(t) \sin(2\pi f_0 t)$

a(t): Bandpasssignal

 $\underline{u}(t)$: äquivalentes Tiefpasssignal, komplexe Einhüllende

 $u_{\rm R}(t)$: Inphasekomponente, Kophasalkomponente, I-Komponente

 $u_{\rm I}(t)$: Quadraturkomponente, Q-Komponente

Quadraturdemodulator

Abtastung im Tiefpassbereich

- Bandbreite $B \Rightarrow$ Abtastintervall T = 1/B: $\underline{u}(t) = \sum_{l=-\infty}^{+\infty} \underbrace{\underline{u}(lT)}_{\underline{u}_l} \operatorname{sinc}\left(\frac{t}{T} - l\right)$
- zeitbegrenzte Signale $\Rightarrow L$ Abtastwerte: $\underline{u}(t) = \sum_{l=0}^{L-1} \underline{u}_l \operatorname{sinc} \left(\frac{t}{T} - l\right)$
- Signalvektor: $\underline{\mathbf{u}} = (\underline{u}_0 \cdots \underline{u}_{L-1})^{\mathrm{T}}$
- Das Tiefpasssignal liegt in einem *L*-dimensionalen komplexen durch die Basisfunktionen

$$b_l(t) = \operatorname{sinc}\left(\frac{t}{T} - l\right), l = 0...L - 1$$

aufgespannten Vektorraum.

Definitionen:
$$si(x) = \frac{sin(x)}{x}$$
, $sinc(x) = \frac{sin(\pi x)}{\pi x} = si(\pi x)$

Abtastung im Bandpassbereich

Das Bandpasssignal liegt in einem 2*L*-dimensionalen reellen Vektorraum: $a(t) = \sqrt{2}u_{\rm R}(t)\cos(2\pi f_0 t) - \sqrt{2}u_{\rm I}(t)\sin(2\pi f_0 t)$ $= \sum_{l=0}^{L-1} u_{{\rm R},l}\sqrt{2}\operatorname{sinc}\left(\frac{t}{T} - l\right)\cos(2\pi f_0 t) - \sum_{l=0}^{L-1} u_{{\rm I},l}\sqrt{2}\operatorname{sinc}\left(\frac{t}{T} - l\right)\sin(2\pi f_0 t)$

Zeitverschiebung

$$a(t - \Delta t) = \sqrt{2} \operatorname{Re} \left(\underbrace{u(t - \Delta t) e^{j2\pi f_0(t - \Delta t)}}_{\text{Tiefpassäquivalent von } a(t - \Delta t)} e^{j2\pi f_0 \Delta t} e^{j2\pi f_0 t} \right)$$
$$\approx \sqrt{2} \operatorname{Re} \left(\underbrace{u(t) e^{-j2\pi f_0 \Delta t} e^{j2\pi f_0 t}}_{\text{Tiefpassäquivalent von } a(t - \Delta t)} \right)$$

 \Rightarrow Kleine Zeitverschiebungen Δt entsprechen im Tiefpassbereich einer Phasendrehung um $e^{-j2\pi f_0\Delta t}$.

Energie deterministischer Signale

 $E = \int_{-\infty}^{+\infty} a^2(t) dt$ nach Definition

- $= \int_{-\infty}^{+\infty} |\underline{A}(f)|^2 df$ Parsevalsches Theorem
- $= \int_{-\infty}^{+\infty} |\underline{U}(f)|^2 df$ siehe eingangs gezeigte Spektren
- $=\int_{-\infty}^{+\infty} |\underline{u}(t)|^2 dt$ Parsevalsches Theorem
- $= \int_{-\infty}^{+\infty} \left| \sum_{l=-\infty}^{+\infty} \underline{u}_l \operatorname{sinc} \left(\frac{t}{T} l \right) \right|^2 dt \text{ Signal aus seinen Abtastwerten interpoliert}$ $= \sum_{l=-\infty}^{+\infty} \left| \underline{u}_l \right|^2 \int_{-\infty}^{+\infty} \left| \operatorname{sinc} \left(\frac{t}{T} l \right) \right|^2 dt \text{ Orthogonalität der sinc-Impulse}$ $= T \sum_{l=-\infty}^{+\infty} \left| \underline{u}_l \right|^2 = T \left\| \underline{u} \right\|^2 \text{ Energie der sinc-Impulse ist } T$

lineare zeitinvariante Kanäle

$$\underline{\underline{s}}(t) \qquad \underline{\underline{h}}(\tau) \qquad \underline{\underline{e}}(t) = (\underline{\underline{h}} * \underline{\underline{s}})(t)$$

$$\underline{e}(mT) = \int_{-\infty}^{+\infty} \underline{s}(mT - \tau)\underline{h}(\tau)d\tau$$

$$= \int_{-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \underline{s}(lT) \operatorname{sinc}\left(\frac{mT - \tau}{T} - l\right) \sum_{w=-\infty}^{+\infty} \underline{h}(wT) \operatorname{sinc}\left(\frac{\tau}{T} - w\right) d\tau$$

$$= \sum_{l=-\infty}^{+\infty} \sum_{w=-\infty}^{+\infty} \underline{s}(lT)\underline{h}(wT) \underbrace{\int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{mT - \tau}{T} - l\right) \operatorname{sinc}\left(\frac{\tau}{T} - w\right) d\tau}_{\text{für } l = m - w \text{ gleich } T, \text{ sonst } 0}$$

$$= T \sum_{w=-\infty}^{+\infty} \underline{s}((m - w)T)\underline{h}(wT)$$

$$\underline{e}_{m} = \sum_{w=-\infty}^{+\infty} \underline{s}_{m-w} \underline{h}_{w}$$

mit $\underline{s}_{n} = \underline{s}(nT)$
 $\underline{h}_{w} = T \underline{h}(wT)$
 $\underline{e}_{m} = \underline{e}(mT)$

Kanalfaltungsmatrix

• Matrix-Vektor-Formalismus:

- Die Kanalfaltungsmatrix <u>H</u> hat Toeplitz-Struktur.
- M = N + W 1
- Der zeitdispersive Kanal entspricht formal einem kreuzgekoppelten MIMO-Kanal.

SISO-Kanal

LOS: Line of Sight, Sichtverbindung NLOS: Non Line of Sight

Zeitbereich

- nicht bandbegrenzt: $\underline{\tilde{h}}(t) = \sum_{p=1}^{P} \underline{a}_p \delta(t - \tau_p)$
- bandbegrenzt:

$$\underline{h}(t) = \sum_{p=1}^{P} \underline{a}_{p} B \operatorname{sinc} \left(B \left(t - \tau_{p} \right) \right)$$

 im allgemeinen zeitdispersiv, das heißt zeitlich ausgedehnte Impulsantwort Frequenzbereich

- nicht bandbegrenzt: $\underline{\widetilde{H}}(f) = \sum_{p=1}^{P} \underline{a}_{p} e^{-j2\pi f \tau_{p}}$
- bandbegrenzt:

$$\underline{H}(f) = \sum_{p=1}^{P} \underline{a}_{p} e^{-j2\pi f \tau_{p}} \operatorname{rect}\left(\frac{f}{B}\right)$$

 im allgemeinen frequenzselektiv, das heißt frequenzabhängige Übertragungsfunktion

Single-Tap-Kanäle

Zeitbereich

- Single-Tap-Kanal: $\left| \tau_p \tau_q \right| \ll rac{1}{B}$ für alle p, q
- Impulsantwort: $\underline{h}(t) \approx \underline{h}B \operatorname{sinc}(B(t - \tau))$

Frequenzbereich

- nicht frequenzselektiver Kanal: $|\underline{H}(f)| \approx \text{const}$
- Übertragungsfunktion: $\underline{H}(f) \approx \underline{h} e^{-j2\pi f\tau} \operatorname{rect}\left(\frac{f}{B}\right)$

$$\underline{h} = \sum_{p=1}^{P} \underline{a}_p$$

MIMO-Kanal

MIMO-Single-Tap-Kanal

- Single-Tap-Kanal: W = 1
- SISO-Subkanal: $\underline{e}_{k_{\text{Rx}}} = \underline{h}_{k_{\text{Rx}},k_{\text{Tx}}} \underline{s}_{k_{\text{Tx}}}$

• MIMO-Kanal: $\underbrace{\begin{pmatrix}\underline{e_1}\\\vdots\\\underline{e_{K_{Rx}}}\\\underline{e}\end{pmatrix}}_{\underline{e}} = \underbrace{\begin{pmatrix}\underline{h_{1,1}}&\dots&\underline{h_{1,K_{Tx}}}\\\vdots&\vdots\\\underline{h_{K_{Rx},1}}&\dots&\underline{h_{K_{Rx},K_{Tx}}}\end{pmatrix}}_{\underline{H}} \cdot \underbrace{\begin{pmatrix}\underline{s_1}\\\vdots\\\underline{s_{K_{Tx}}}\\\underline{s}\end{pmatrix}}_{\underline{s}}$

• Die Kanalmatrix <u>**H**</u> ist eine $K_{\text{Rx}} \times K_{\text{Tx}}$ -Matrix.

Basiswechsel

Man kann ein und dasselbe physikalische Signal bezüglich unterschiedlicher Basisfunktionen darstellen!

Systemmodell bezüglich der alten Basisfunktionen:

 $\underline{\mathbf{e}}_{alt} = \underline{\mathbf{H}}_{alt} \cdot \underline{\mathbf{s}}_{alt}$

 <u>B</u> ist eine quadratische Matrix, deren Spalten die neuen Basisfunktionen bezüglich der alten Basisfunktionen beschreiben. Für die Signalvektoren gilt:

 $\underline{\mathbf{u}}_{alt} = \underline{\mathbf{B}} \cdot \underline{\mathbf{u}}_{neu}$ $\underline{\mathbf{u}}_{neu} = \underline{\mathbf{B}}^{-1} \cdot \underline{\mathbf{u}}_{alt}$

- Falls die Basisfunktionen orthonormal sind, ist die Matrix <u>**B**</u> unitär: $\underline{\mathbf{B}}^{-1} = \underline{\mathbf{B}}^{*T}$
- sender- und empfängerseitig im allgemeinen unterschiedliche Basisfunktionen: $\underline{\mathbf{e}}_{neu} = \underline{\mathbf{B}}_{Rx}^{-1} \cdot \underline{\mathbf{H}}_{alt} \cdot \underline{\mathbf{B}}_{Tx} \cdot \underline{\mathbf{s}}_{neu}$
- transformierte Kanalmatrix:

 $\underline{\mathbf{H}}_{neu} = \underline{\mathbf{B}}_{Rx}^{-1} \cdot \underline{\mathbf{H}}_{alt} \cdot \underline{\mathbf{B}}_{Tx}$

zyklische Faltungsmatrix

Eigenfunktionen des zyklisch faltenden Kanals

- Die komplexen Exponentialfunktionen $\underline{s}_{n}^{(k)} = \frac{1}{\sqrt{N}} \underline{\varepsilon}^{nk}, \underline{\varepsilon} = e^{j\frac{2\pi}{N}}$ sind orthonormale Eigenfunktionen des zyklisch faltenden Kanals.
- Orthonormalität:

$$\left\langle \underline{\mathbf{s}}^{(k)}, \underline{\mathbf{s}}^{(l)} \right\rangle = \sum_{n=0}^{N-1} \underline{\mathbf{s}}_{n}^{(k)^{*}} \underline{\mathbf{s}}_{n}^{(l)} = \frac{1}{N} \sum_{n=0}^{N-1} \underline{\mathbf{\varepsilon}}^{(l-k)n} = \begin{cases} 1 & k = l \\ \frac{1-\underline{\mathbf{\varepsilon}}^{(l-k)N}}{1-\underline{\mathbf{\varepsilon}}^{(l-k)}} = \frac{1-e^{j2\pi(l-k)}}{1-e^{j\frac{2\pi}{N}(l-k)}} = 0 & k \neq l \end{cases}$$

• Übertragung über zyklisch faltenden Kanal:

$$\underline{e}_{n}^{(k)} = \sum_{w} \underline{s}_{n-w}^{(k)} \underline{h}_{w} = \sum_{w} \frac{1}{\sqrt{N}} \underline{\varepsilon}^{(n-w)k} \underline{h}_{w} = \underbrace{\frac{1}{\sqrt{N}} \underline{\varepsilon}^{nk}}_{\underline{s}_{n}^{(k)}} \underbrace{\sum_{w} \underline{h}_{w} \underline{\varepsilon}^{-wk}}_{\underline{H}_{k}}_{\underline{Eigenwert,}}$$
Übertragungsfunktion

Diagonalisierung der zyklischen Faltungsmatrix

- Fourier-Matrix (ist unitär): $\underline{\mathbf{F}} = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \underline{\varepsilon}^{-1} & \underline{\varepsilon}^{-2} & \dots & \underline{\varepsilon}^{-(N-1)} \\ 1 & \underline{\varepsilon}^{-2} & \underline{\varepsilon}^{-4} & \dots & \underline{\varepsilon}^{-2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \underline{\varepsilon}^{-(N-1)} & \underline{\varepsilon}^{-2(N-1)} & \dots & \underline{\varepsilon}^{-(N-1)^2} \end{pmatrix}, \underline{\varepsilon} = e^{j\frac{2\pi}{N}}$
- Basiswechsel: $\underline{\mathbf{B}} = \underline{\mathbf{F}}^{-1} = \underline{\mathbf{F}}^{*\mathrm{T}}$
- transformierte Kanalmatrix:

$$\underline{\mathbf{F}} \cdot \underline{\mathbf{H}}_{z} \cdot \underline{\mathbf{F}}^{*T} = \begin{pmatrix} \ddots & & & \\ & \underline{H}_{n} = \sum_{w} \underline{h}_{w} \underline{\varepsilon}^{-wn} & \\ & & \ddots \end{pmatrix} = \operatorname{diag} \left(\sqrt{N} \underline{\mathbf{F}} \cdot \begin{pmatrix} \underline{h}_{0} \\ \\ \underline{h}_{N-1} \end{pmatrix} \right)$$

 Durch geeignete Wahl der Basisfunktionen des Signalraums kann ein gekoppeltes MIMO-System in ein ungekoppeltes MIMO-System überführt werden!

Orthogonal Frequency Division Multiplexing (OFDM)

Parametrisierung von OFDM

- Subträgeranzahl N sollte eine Zweierpotenz sein, eventuell Nullsubträger am Rand (→ leichte Überabtastung) und in der Bandmitte (→ Gleichspannungsoffsetproblematik) einfügen ⇒ schnelle Fourier-Transformation einsetzbar
- Symboldauer T_S sollte groß im Vergleich zur Präfixdauer T_P sein damit geringer Overhead \Leftrightarrow Symboldauer $T_S \gg$ Verzögerungsspreizung T_M
- Zeitvarianz des Kanals sollte vernachlässigbar sein \Leftrightarrow Symboldauer $T_S \ll$ Korrelationsdauer T_C
- geeignete Parametrisierung in typischen Mobilfunkkanälen $(T_{\rm M} \ll T_{\rm C}, \text{underspread})$ möglich, bei stark zeitvarianten Kanälen $(T_{\rm M} \gg T_{\rm C}, \text{overspread})$ sich widersprechende Forderungen

Bandpassrauschen und äquivalentes Tiefpassrauschen

- Tiefpassrauschen: $\underline{n}(t) = x(t) + jy(t)$
- Autokorrelationsfunktion des stationären Tiefpassrauschens $\underline{n}(t)$: $\underline{R}_{nn}(\tau) = E\{\underline{n}^{*}(t)\underline{n}(t+\tau)\} = (R_{xx}(\tau) + R_{yy}(\tau)) + j(R_{xy}(\tau) - R_{yx}(\tau))$
- Bandpassrauschen w(t): $w(t) = \sqrt{2} \operatorname{Re}\left(\underline{n}(t) e^{j2\pi f_0 t}\right) = \sqrt{2} x(t) \cos(2\pi f_0 t) - \sqrt{2} y(t) \sin(2\pi f_0 t)$
- Autokorrelationsfunktion des Bandpassrauschens w(t): $R_{ww}(\tau, t) = E\{w(t)w(t + \tau)\}$ $= \left(R_{xx}(\tau) + R_{yy}(\tau)\right)\cos(2\pi f_0\tau)$ $+ \left(-R_{xy}(\tau) + R_{yx}(\tau)\right)\sin(2\pi f_0\tau)$ $+ \left(R_{xx}(\tau) - R_{yy}(\tau)\right)\cos(4\pi f_0t + 2\pi f_0\tau)$ $+ \left(-R_{xy}(\tau) - R_{yx}(\tau)\right)\sin(4\pi f_0t + 2\pi f_0\tau)$

stationäres Bandpassrauschen

- Die Autokorrelationsfunktion $R_{ww}(\tau, t)$ darf bei Stationarität nicht von t abhängen!
- Aus der Stationarität des Bandpassrauschens w(t) folgt die Stationarität und die Rotationsinvarianz des äquivalenten Tiefpassrauschens <u>n</u>(t):

$$R_{xx}(\tau) = R_{yy}(\tau)$$
$$R_{xy}(\tau) = -R_{yx}(\tau) = -R_{xy}(-\tau)$$

(letzte Gleichung ist allgemeine Eigenschaft von Kreuzkorrelationsfunktionen)

- Tiefpass-Bandpass-Transformation der Korrelationsfunktion: $R_{ww}(\tau) = \operatorname{Re}\left(\underline{R}_{nn}(\tau)e^{j2\pi f_0\tau}\right)$
- Leistung (Varianz) des Rauschens:

$$P = E\{w^{2}(t)\} = R_{ww}(0) = \underline{R}_{nn}(0) = E\{|\underline{n}(t)|^{2}\} = \sigma^{2}$$

zeitdiskretes Rauschen

• Abtastwerte:

$$\underline{n}_m = x_m + jy_m = \underline{n}(mT) = x(mT) + jy(mT)$$

Rauschvektor:

$$\underline{\mathbf{n}} = \left(\underline{n}_0 \dots \underline{n}_{M-1}\right)^{\mathrm{T}}$$

- Autokorrelationsfunktion: $\underline{R}_{nn}(l) = E\{\underline{n}^{*}(mT)\underline{n}((m+l)T)\} = \underline{R}_{nn}(lT)$
- Korrelationsmatrix:

$$\underline{\mathbf{R}}_{nn} = E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T}\} = \begin{pmatrix} \underline{R}_{nn}(0) & \underline{R}_{nn}(-1) \\ \underline{R}_{nn}(1) & \underline{R}_{nn}(0) & \ddots \\ & \ddots & \ddots & \underline{R}_{nn}(-1) \\ & & \underline{R}_{nn}(1) & \underline{R}_{nn}(0) \end{pmatrix}$$

Pseudokorrelationsmatrix: $\underline{\widetilde{\mathbf{R}}}_{nn} = E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{T}\} = \mathbf{0} \text{ (für stationäres Rauschen)}$

Eigenschaften der Korrelationsmatrix

• Die Korrelationsmatrix $\underline{\mathbf{R}}_{nn}$ ist hermitesch: $\underline{\mathbf{R}}_{nn}^{*T} = (E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T}\})^{*T} = E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T}\} = \underline{\mathbf{R}}_{nn}$ • Die Korrelationsmatrix $\underline{\mathbf{R}}_{nn}$ ist positiv semidefinit: $\underline{\mathbf{u}}^{*T} \cdot \underline{\mathbf{R}}_{nn} \cdot \underline{\mathbf{u}} = \underline{\mathbf{u}}^{*T} \cdot E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T}\} \cdot \underline{\mathbf{u}}$ $= E\{\underline{\mathbf{u}}^{*T} \cdot \underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T} \cdot \underline{\mathbf{u}}\}$ $= E\{\underline{\mathbf{u}}^{*T} \cdot \underline{\mathbf{n}} \cdot (\underline{\mathbf{u}}^{*T} \cdot \underline{\mathbf{n}})^{*T}\}$ $= E\{[\underline{\mathbf{u}}^{*T} \cdot \underline{\mathbf{n}}]^{2}\}$ ≥ 0 für alle $\underline{\mathbf{u}}$

- Abtastintervall: $T = \frac{1}{B}$
- Die Abtastwerte des äquivalenten Tiefpassrauschens sind unkorreliert!
- Real- und Imaginärteil sind unkorreliert, die Leistung von Real- und Imaginärteil ist jeweils $\frac{\sigma^2}{2}$.
- Bei einer zweiseitigen spektralen Leistungsdichte $\frac{N_0}{2}$ des Bandpassrauschens ist die Leistung (Varianz) innerhalb der interessierenden Bandbreite *B* $P = \sigma^2 = BN_0 = \frac{N_0}{T}$.
- Korrelationsmatrix: $\underline{\mathbf{R}}_{nn} = \sigma^2 \mathbf{E}$

multivariates weißes Gauß-Rauschen

• Wahrscheinlichkeitsdichtefunktion von Real- und Imaginärteil:

$$p_{x}(x_{m}) = \frac{1}{\sqrt{\pi\sigma^{2}}} e^{-\frac{x_{m}^{2}}{\sigma^{2}}}, p_{y}(y_{m}) = \frac{1}{\sqrt{\pi\sigma^{2}}} e^{-\frac{y_{m}^{2}}{\sigma^{2}}}$$

- zweidimensionale Wahrscheinlichkeitsdichtefunktion der komplexwertigen Rauschabtastwerte: $p_n(\underline{n}_m) = \frac{1}{\pi\sigma^2} e^{-\frac{|\underline{n}_m|^2}{\sigma^2}}$
- multivariates weißes Gauß-Rauschen:

$$p_{n}(\underline{\mathbf{n}}) = \prod_{m} p_{n}(\underline{n}_{m}) = \frac{1}{(\pi\sigma^{2})^{M}} e^{-\frac{\|\underline{\mathbf{n}}\|^{2}}{\sigma^{2}}} = \frac{1}{(\pi\sigma^{2})^{M}} e^{-\frac{\underline{\mathbf{n}}^{*T}\underline{\mathbf{n}}}{\sigma^{2}}}$$

 Schreibweise: <u>n</u>~CN{0, σ²E} circular symmetric complex normal, independent and identically distributed (i.i.d.)

Eineindeutige Funktionen reeller Zufallsvariablen

y = g(x)

 $p_x(x)|dx|$

 $p_y(y)|dy|$

• skalarer Fall: $p_y(y)|dy| = p_x(x)|dx|$

$$p_{y}(y) = \frac{p_{x}(x)}{\frac{|dy|}{|dx|}} = \frac{p_{x}(x)}{\left|\frac{dg}{dx}\right|}$$

allgemeiner mehrdimensionaler Fall,
 N Funktionen von N Variablen:

$$p_{y}(\mathbf{y}) = \frac{p_{x}(\mathbf{x})}{|J|}, \text{ Jacobi-Determinante } J = \det \begin{pmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{N}} \\ \vdots & & \vdots \\ \frac{\partial y_{N}}{\partial x_{1}} & \cdots & \frac{\partial y_{N}}{\partial x_{N}} \end{pmatrix}$$

lineare Funktion $\mathbf{y} = \mathbf{G} \cdot \mathbf{x}$ beschrieben durch die quadratische Matrix \mathbf{G} : $J = \det(\mathbf{G}) \Rightarrow p_{\mathbf{y}}(\mathbf{y}) = \frac{p_{\mathbf{x}}(\mathbf{x})}{|\det(\mathbf{G})|} = \frac{p_{\mathbf{x}}(\mathbf{G}^{-1} \cdot \mathbf{y})}{|\det(\mathbf{G})|}$ X

Zufallszahlengeneratoren

Erzeuge eine Zufallsvariable y mit vorgegebener Wahrscheinlichkeitsdichtefunktion $p_y(y)$ durch Transformation einer gleichverteilten Zufallsvariablen x!

Behauptung: Die benötigte Transformationsfunktion g(x) entspricht der Umkehrfunktion der gewünschten Verteilungsfunktion:

$$y = g(x) = P_y^{-1}(x)$$
 mit $P_y(y) = \int_{-\infty}^{y} p_y(\xi) d\xi$

Beweis:

mit
$$p_x(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{sonst} \end{cases}$$
 (Gleichverteilung)

folgt
$$\frac{\mathbf{p}_{\mathbf{x}}(x)}{\left|\frac{\mathrm{dg}}{\mathrm{dx}}\right|} = \frac{1}{\left|\frac{\mathrm{dg}}{\mathrm{dx}}\right|} = \frac{1}{\left|\frac{\mathrm{dP}_{\mathbf{y}}^{-1}(x)}{\mathrm{dx}}\right|} = \frac{\mathrm{dP}_{\mathbf{y}}(y)}{\mathrm{dy}} = \mathbf{p}_{\mathbf{y}}(y)$$

lineare Funktionen komplexer Zufallsvariablen

$$\underline{y} = \underline{g}\underline{x} \Leftrightarrow \begin{pmatrix} \operatorname{Re}\left(\underline{y}\right) \\ \operatorname{Im}\left(\underline{y}\right) \end{pmatrix} = \begin{pmatrix} \operatorname{Re}\left(\underline{g}\right) & -\operatorname{Im}\left(\underline{g}\right) \\ \operatorname{Im}\left(\underline{g}\right) & \operatorname{Re}\left(\underline{g}\right) \end{pmatrix} \cdot \begin{pmatrix} \operatorname{Re}(\underline{x}) \\ \operatorname{Im}(\underline{x}) \end{pmatrix}$$

Jacobi-Determinante:

$$J = \det \begin{pmatrix} \operatorname{Re}\left(\underline{g}\right) & -\operatorname{Im}\left(\underline{g}\right) \\ \operatorname{Im}\left(\underline{g}\right) & \operatorname{Re}\left(\underline{g}\right) \end{pmatrix} = \operatorname{Re}^{2}\left(\underline{g}\right) + \operatorname{Im}^{2}\left(\underline{g}\right) = \left|\underline{g}\right|^{2}$$

• Wahrscheinlichkeitsdichtefunktion:

$$p_{y}\left(\underline{y}\right) = \frac{p_{x}(\underline{x})}{\left|\underline{g}\right|^{2}}$$

• allgemeiner mehrdimensionaler Fall:

$$p_{\mathbf{y}}\left(\underline{\mathbf{y}}\right) = \frac{p_{\mathbf{x}}(\underline{\mathbf{x}})}{\left|\det(\underline{\mathbf{G}})\right|^{2}} = \frac{p_{\mathbf{x}}(\underline{\mathbf{G}}^{-1} \cdot \underline{\mathbf{y}})}{\left|\det(\underline{\mathbf{G}})\right|^{2}}$$

multivariates farbiges Gauß-Rauschen

$$\underline{\underline{\mathbf{n}}, \underline{\mathbf{R}}_{nn} = \mathbf{E}}_{\underline{\mathbf{A}} = \underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}}^{1/2}} \underline{\underline{\widetilde{\mathbf{n}}}, \underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}}} \xrightarrow{\underline{\widetilde{\mathbf{n}}}, \underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}}}$$

- Erzeuge farbiges Rauschen $\underline{\widetilde{\mathbf{n}}}$ durch Filtern von weißem Rauschen $\underline{\mathbf{n}}$! $\underline{\mathbf{R}}_{\widetilde{\mathbf{n}}\widetilde{\mathbf{n}}} = E\{\underline{\widetilde{\mathbf{n}}} \cdot \underline{\widetilde{\mathbf{n}}}^{*\mathrm{T}}\} = E\{\underline{\mathbf{A}} \cdot \underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*\mathrm{T}} \cdot \underline{\mathbf{A}}^{*\mathrm{T}}\} = \underline{\mathbf{A}} \cdot \underline{\mathbf{A}}^{*\mathrm{T}}$ $\det(\underline{\mathbf{R}}_{\widetilde{\mathbf{n}}\widetilde{\mathbf{n}}}) = \det(\underline{\mathbf{A}} \cdot \underline{\mathbf{A}}^{*\mathrm{T}}) = \det(\underline{\mathbf{A}})\det(\underline{\mathbf{A}}^{*\mathrm{T}}) = \left|\det(\underline{\mathbf{A}})\right|^2$
- Da die Korrelationsmatrix $\underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}}$ hermitesch und positiv definit ist, kann man eine geeignete Matrix $\underline{\mathbf{A}}$ durch Choleskyzerlegung finden (Matlab: A = chol(R, 'lower')).
- Wahrscheinlichkeitsdichtefunktion:

$$p_{\widetilde{\mathbf{n}}}(\underline{\widetilde{\mathbf{n}}}) = \frac{p_{\mathbf{n}}(\underline{\mathbf{A}}^{-1} \cdot \underline{\widetilde{\mathbf{n}}})}{\left|\det(\underline{\mathbf{A}})\right|^{2}} = \frac{1}{\left|\det(\underline{\mathbf{A}})\right|^{2}} \frac{1}{\pi^{M}} e^{-\underline{\widetilde{\mathbf{n}}}^{*T} \cdot (\underline{\mathbf{A}}^{*T})^{-1} \cdot \underline{\mathbf{A}}^{-1} \cdot \underline{\widetilde{\mathbf{n}}}}$$
$$p_{\widetilde{\mathbf{n}}}(\underline{\widetilde{\mathbf{n}}}) = \frac{1}{\pi^{M} \det(\underline{\mathbf{R}}_{\widetilde{\mathbf{n}}\widetilde{\mathbf{n}}})} e^{-\underline{\widetilde{\mathbf{n}}}^{*T} \cdot \underline{\mathbf{R}}_{\widetilde{\mathbf{n}}\widetilde{\mathbf{n}}}^{-1} \cdot \underline{\widetilde{\mathbf{n}}}}$$

Schreibweise: $\underline{\widetilde{\mathbf{n}}} \sim \mathcal{CN} \{ 0, \underline{\mathbf{R}}_{\widetilde{\mathbf{n}}\widetilde{\mathbf{n}}} \}$

Prewhitening Filter

<u>s</u>

 $\underline{\mathbf{H}} = \underline{\mathbf{W}} \cdot \underline{\widetilde{\mathbf{H}}}$

wähle $\underline{\mathbf{W}} = \underline{\mathbf{A}}^{-1} = \underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}}^{-1/2}$ mit $\underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}} = \underline{\mathbf{A}} \cdot \underline{\mathbf{A}}^{*\mathrm{T}}$ folgt: $\underline{\mathbf{R}}_{\mathrm{nn}} = \mathrm{E}\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*\mathrm{T}}\}\$ $= \mathrm{E}\{\underline{\mathbf{W}} \cdot \underline{\widetilde{\mathbf{n}}} \cdot \underline{\widetilde{\mathbf{n}}}^{*\mathrm{T}} \cdot \underline{\mathbf{W}}^{*\mathrm{T}}\}\$ $= \underline{\mathbf{W}} \cdot \underline{\mathbf{R}}_{\widetilde{n}\widetilde{n}} \cdot \underline{\mathbf{W}}^{*\mathrm{T}}\$ $= \underline{\mathbf{A}}^{-1} \cdot \underline{\mathbf{A}} \cdot \underline{\mathbf{A}}^{*\mathrm{T}} \cdot (\underline{\mathbf{A}}^{*\mathrm{T}})^{-1}\$ $= \mathbf{E}$

Filterung

$$\underline{\underline{u}} \xrightarrow{\underline{n}} \underbrace{\underline{e}} \xrightarrow{\underline{h}^{\mathrm{T}}} \underbrace{\mathrm{SNR}}_{\gamma}$$

Traditio et Innovatio

- Signalform $\underline{\mathbf{u}}$ vorgegeben und bekannt, Energie $E = T \|\underline{\mathbf{u}}\|^2$
- <u>n</u> ist weißes Rauschen, Leistung σ^2
- Nutzleistung am Ausgang:

$$S = \left|\underline{\mathbf{h}}^{\mathrm{T}} \cdot \underline{\mathbf{u}}\right|^{2}$$

- Störleistung am Ausgang: $N = \sigma^2 \|\mathbf{h}\|^2$
- Signal-Rausch-Verhältnis, Signal to Noise Ratio (SNR):

$$\gamma = \frac{S}{N} = \frac{\left|\underline{\mathbf{h}}^{\mathrm{T}} \cdot \underline{\mathbf{u}}\right|^{2}}{\sigma^{2} \left\|\underline{\mathbf{h}}\right\|^{2}}$$

signalangepasstes Filter, Matched Filter (MF)

Bestimme $\underline{\mathbf{h}}$ so, dass das SNR γ maximal wird!

• Schwarzsche Ungleichung: $|\underline{\mathbf{h}}^{\mathrm{T}} \cdot \underline{\mathbf{u}}|^{2} \leq ||\underline{\mathbf{h}}||^{2} ||\underline{\mathbf{u}}||^{2}$, Gleichheit für $\underline{\mathbf{h}}^{*} \sim \underline{\mathbf{u}}$

 \Rightarrow SNR γ wird maximal für $\underline{\mathbf{h}} \sim \underline{\mathbf{u}}^*$

• das so erzielte maximale SNR ist:

$$\mathbf{v} = \frac{\|\mathbf{u}\|^2}{\sigma^2} = \frac{E}{N_0}$$

γ

 Achtung: Das zum signalangepassten Filter im Bandpassbereich äquivalente Tiefpasssystem enthält zusätzlich noch einen Realteilbildner und erzielt ein doppelt so hohes SNR!

Kanalkapazität

SISO-Kanalkapazität

Kanalkapazität pro Kanalzugriff (Nyquist-Rate):

$$C = \operatorname{ld}(1 + \gamma) = \operatorname{ld}\left(1 + \frac{|\underline{h}|^2 S}{\sigma^2}\right)$$
, Einheit: $[C] = \frac{\operatorname{bit}}{\operatorname{s}\operatorname{Hz}}$

C. E. Shannon: A mathematical theory of communication. *Bell System Technical Journal*, vol. 27, pp. 379-423, 623-656, July-October 1948.

$$C = \sum_{r=1}^{R} C_r = \sum_{r=1}^{R} \operatorname{ld}(1+\gamma_r) = \sum_{r=1}^{R} \operatorname{ld}\left(1 + \frac{|\underline{h}_r|^2 S_r}{\sigma_r^2}\right) = \operatorname{ld}\prod_{r=1}^{R} \left(1 + \frac{|\underline{h}_r|^2 S_r}{\sigma_r^2}\right)$$

Kanalkapazität ohne senderseitiger Kanalkenntnis

- Kanalkenntnis = Channel State Information, CSI
- Alle *R* parallelen Kanäle bekommen die gleiche Sendeleistung: $S_r = \frac{S}{R}$
- resultierende Gesamtkanalkapazität:

$$C = \sum_{r=1}^{R} \operatorname{ld}\left(1 + \frac{|\underline{h}_{r}|^{2}}{\sigma_{r}^{2}} \frac{S}{R}\right) = \operatorname{ld}\prod_{r=1}^{R} \left(1 + \frac{|\underline{h}_{r}|^{2}}{\sigma_{r}^{2}} \frac{S}{R}\right)$$

Optimierungsaufgabe

 Frage: Wie groß ist die Gesamtkanalkapazität C bei beschränkter Gesamtsendeleistung S und vorhandener senderseitiger Kanalkenntnis?

Idee: Verteile die Gesamtsendeleistung *S* unter Ausnutzung der Kanalkenntnis geschickt auf die *R* parallelen Kanäle!

• Optimierungsaufgabe: Maximiere

$$C = \sum_{r=1}^{R} \operatorname{ld}\left(1 + \frac{\left|\underline{h}_{r}\right|^{2} S_{r}}{\sigma_{r}^{2}}\right)$$

unter den Nebenbedingungen

 $S_r \ge 0$ und $S = \sum_{r=1}^R S_r$

Waterfilling

Mit geeignet gewähltem S_W erfüllt

$$S_r = \max\left\{0, S_W - \frac{\sigma_r^2}{\left|\underline{h}_r\right|^2}\right\}$$

die Nebenbedingungen.

Behauptung

Die mit Waterfilling erzielte Gesamtkanalkapazität

$$C = \sum_{r=1}^{R} \operatorname{ld} \left(1 + \frac{|\underline{h}_{r}|^{2}}{\sigma_{r}^{2}} \underbrace{\max\left\{0, S_{W} - \frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}\right\}}_{S_{r}} \right) = \sum_{r=1}^{R} \max\left\{0, \operatorname{ld} \left(\frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right)\right\}$$
$$= \operatorname{ld} \prod_{r=1}^{R} \left(1 + \frac{|\underline{h}_{r}|^{2}}{\sigma_{r}^{2}} \underbrace{\max\left\{0, S_{W} - \frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}\right\}}_{S_{r}}\right) = \operatorname{ld} \prod_{r=1}^{R} \max\left\{1, \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right\}$$

ist maximal.

Beweis (1)

Jede andere die Nebenbedingungen erfüllende Verteilung der Gesamtsendeleistung $S_r + \Delta S_r$ führt zu einer kleineren Gesamtkanalkapazität:

$$\begin{split} & \operatorname{ld} \prod_{r=1}^{R} \left(1 + \frac{|\underline{h}_{r}|^{2}}{\sigma_{r}^{2}} \left(\underbrace{\max\left\{0, S_{W} - \frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}\right\} + \Delta S_{r}}_{S_{r}} \right) \right) \\ &= \operatorname{ld} \prod_{r=1}^{R} \left(\max\left\{1, \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right\} + \frac{|\underline{h}_{r}|^{2} \Delta S_{r}}{\sigma_{r}^{2}} \right) \\ &= \operatorname{ld} \left(\prod_{r=1}^{R} \left(\max\left\{1, \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right\} \right) \cdot \prod_{r=1}^{R} \frac{\operatorname{max}\left\{1, \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right\} + \frac{|\underline{h}_{r}|^{2} \Delta S_{r}}{\operatorname{max}\left\{1, \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right\}} \right) \\ &= \underbrace{\operatorname{ld} \prod_{r=1}^{R} \operatorname{max}\left\{1, \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}\right\} + \operatorname{ld} \prod_{r=1}^{R} \left(1 + \frac{\Delta S_{r}}{\operatorname{max}\left\{\frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}, S_{W}\right\}}\right)} \end{split}$$

Beweis (2)

$$C + \operatorname{Id} \prod_{r=1}^{R} \left(1 + \frac{\Delta S_{r}}{\max\left\{\frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}, S_{W}\right\}} \right)$$

$$\leq C + \operatorname{Id} \prod_{r=1}^{R} \left(1 + \frac{\Delta S_{r}}{S_{W}} \right)$$

$$= C + R \operatorname{Id} \underbrace{\sqrt{\prod_{r=1}^{R} \left(1 + \frac{\Delta S_{r}}{S_{W}} \right)}}_{\text{geometrisches Mittel}}$$

$$\leq C + R \operatorname{Id} \left(\frac{1}{R} \sum_{r=1}^{R} \left(1 + \frac{\Delta S_{r}}{S_{W}} \right) \right)$$

$$= C + R \operatorname{Id} \left(1 + \frac{1}{RS_{W}} \sum_{r=1}^{R} \Delta S_{r} \right)$$

$$= C$$
Im letzten Schritt wurde die Nebenbed

 $S = \sum_{r=1}^{R} (S_r + \Delta S_r) = \underbrace{\sum_{r=1}^{R} S_r}_{=S} + \sum_{r=1}^{R} \Delta S_r \Longrightarrow \sum_{r=1}^{R} \Delta S_r = 0$

Sonderfall: alle Kanäle genutzt

$$S_{r} = S_{W} - \frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}$$

$$\Rightarrow \sum_{r=1}^{R} S_{r} = \sum_{r=1}^{R} \left(S_{W} - \frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}} \right) = S$$

$$\Rightarrow S_{W} = \frac{S}{R} + \frac{1}{R} \sum_{r=1}^{R} \frac{\sigma_{r}^{2}}{|\underline{h}_{r}|^{2}}$$

$$\Rightarrow C = \sum_{r=1}^{R} \operatorname{ld} \left(\frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}} \right) = \operatorname{ld} \prod_{r=1}^{R} \frac{|\underline{h}_{r}|^{2} S_{W}}{\sigma_{r}^{2}}$$

allgemeiner (N, M)-MIMO-Kanal

gegebenenfalls erforderliches Prewhitening Filter als Bestandteil des Kanals betrachten

Entkopplungsprinzip

Überführe das gekoppelte (N, M)-MIMO-System durch Vorschalten oder Nachschalten weiterer Signalverarbeitungskomponenten in ein (leichter zu behandelndes) äquivalentes ungekoppeltes (R, R)-MIMO-System!

$$\begin{array}{c|c} \underline{t} \\ \hline \\ R \end{array} & \hline \\ R \end{array} & \hline \\ N \end{array} & \hline \\ N \end{array} & \hline \\ N \end{array} & \hline \\ System & M \end{array} & \hline \\ N \end{array} & \hline \\ R \end{array} & \hline \\ R \end{array}$$
entkoppeltes (R, R) -MIMO-System

Finde unitäre Matrizen <u>U</u> und <u>V</u> so, dass $\underline{\Sigma} = \underline{\mathbf{U}}^{*T} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}}$ eine diagonale Matrix ist!

Singulärwertzerlegungstheorem

Zu jeder $M \times N$ Matrix <u>H</u> gibt es unitäre Matrizen <u>U</u> und <u>V</u> derart, dass $\Sigma = \underline{\mathbf{U}}^{*T} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}}$

eine $M \times N$ Diagonalmatrix mit nichtnegativen reellen Diagonalelementen ist.

Matlab: [U, S, V] = svd(H)

C. Eckart, G. Young: A principal axis transformation for non-Hermitian matrices. *Bulletin of the American Mathematical Society,* Bd. 45, S. 118-121, Januar/Dezember 1939.

T. K. Moon, W. C. Stirling: *Mathematical Methods and Algorithms for Signal Processing*. Upper Saddle River, NJ: Prentice Hall, 2000, ISBN 0-201-36186-8.

Singulärwertzerlegung

- $\Sigma = \underline{\mathbf{U}}^{*T} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}} \Leftrightarrow \underline{\mathbf{H}} = \underline{\mathbf{U}} \cdot \Sigma \cdot \underline{\mathbf{V}}^{*T}$
- <u>U</u>: unitäre $M \times M$ Matrix, Spalten sind die linken Singulärvektoren beziehungsweise die Eigenvektoren von $\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T} = \underline{\mathbf{U}} \cdot \Sigma \cdot \Sigma^{*T} \cdot \underline{\mathbf{U}}^{*T}$
- <u>**V**</u>: unitäre $N \times N$ Matrix, Spalten sind die rechten Singulärvektoren beziehungsweise die Eigenvektoren von $\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}} = \underline{\mathbf{V}} \cdot \Sigma^{*T} \cdot \Sigma \cdot \underline{\mathbf{V}}^{*T}$
- $\Sigma: M \times N$ Diagonalmatrix, Diagonalelemente sind die Singulärwerte beziehungsweise die Quadratwurzeln der Eigenwerte λ_q von $\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*\mathrm{T}}$ oder $\underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}$
- $\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T}$: Gramsche Matrix der Zeilenvektoren
- $\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}}$: Gramsche Matrix der Spaltenvektoren

Struktur von Σ

- Singulärwerte absteigend sortiert: $\sqrt{\lambda_1} \ge \sqrt{\lambda_2} \ge ... \ge \sqrt{\lambda_R} > \sqrt{\lambda_{R+1}} = ... = \sqrt{\lambda_Q} = 0$
- Rang des Kanals: $R = \operatorname{rang}(\underline{\mathbf{H}}) \le Q = \min\{N, M\}$

Matrixstrukturen (1)

- $\Sigma = \underline{\mathbf{U}}^{*T} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}} \Leftrightarrow \underline{\mathbf{H}} = \underline{\mathbf{U}} \cdot \Sigma \cdot \underline{\mathbf{V}}^{*T}$
- Beispiel: M = N

Matrixstrukturen (2)

- $\Sigma = \underline{\mathbf{U}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}} \Leftrightarrow \underline{\mathbf{H}} = \underline{\mathbf{U}} \cdot \Sigma \cdot \underline{\mathbf{V}}^{*\mathrm{T}}$
- Beispiel: M > N

Matrixstrukturen (3)

- $\Sigma = \underline{\mathbf{U}}^{*T} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}} \Leftrightarrow \underline{\mathbf{H}} = \underline{\mathbf{U}} \cdot \Sigma \cdot \underline{\mathbf{V}}^{*T}$
- Beispiel: M < N

MIMO-Kanalkapazität ohne senderseitiger Kanalkenntnis

alle Eingänge unabhängig und mit gleicher Leistung

$$C = \operatorname{Id} \prod_{r=1}^{R} \left(1 + \frac{\lambda_r}{\sigma^2} \frac{S}{N} \right) = \operatorname{Id} \left(\operatorname{det} \left(\mathbf{E} + \frac{S}{N\sigma^2} \Sigma \cdot \Sigma^{*T} \right) \right)$$

$$= \operatorname{Id} \left(\operatorname{det} \left(\mathbf{E} + \frac{S}{N\sigma^2} \underline{\mathbf{U}}^{*T} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{V}} \cdot \underline{\mathbf{V}}^{*T} \cdot \underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{U}} \right) \right)$$

$$= \operatorname{Id} \left(\operatorname{det} \left(\underline{\mathbf{U}}^{*T} \cdot \left(\mathbf{E} + \frac{S}{N\sigma^2} \underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T} \right) \cdot \underline{\mathbf{U}} \right) \right)$$

$$= \operatorname{Id} \left(\operatorname{det} \left(\underline{\mathbf{U}}^{*T} \right) \operatorname{det} \left(\mathbf{E} + \frac{S}{N\sigma^2} \underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T} \right) \operatorname{det} \left(\underline{\mathbf{U}} \right) \right)$$

$$C = \operatorname{Id} \left(\operatorname{det} \left(\mathbf{E} + \frac{S}{N\sigma^2} \underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T} \right) \right) = \operatorname{Id} \left(\operatorname{det} \left(\mathbf{E} + \frac{S}{N\sigma^2} \underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}} \right)$$

G. J. Foschini: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. *Bell Labs Technical Journal*, Bd. 1, S. 41-59, 1996.

MIMO-Kanalkapazität mit senderseitiger Kanalkenntnis

 $C = \sum_{r=1}^{R} \max\left\{0, \operatorname{ld}\left(\frac{\lambda_{r}S_{W}}{\sigma^{2}}\right)\right\}$

• *S*_W so wählen, dass

$$S = \sum_{r=1}^{R} S_r = \sum_{r=1}^{R} \max\left\{0, S_W - \frac{\sigma^2}{\lambda_r}\right\}$$

• Sonderfall: alle *R* Kanäle werden genutzt $S_{W} = \frac{S}{R} + \frac{1}{R} \sum_{r=1}^{R} \frac{\sigma^{2}}{\lambda_{r}}$ $C = \sum_{r=1}^{R} \operatorname{Id}\left(\frac{\lambda_{r}S_{W}}{\sigma^{2}}\right) = \operatorname{Id}\prod_{r=1}^{R} \frac{\lambda_{r}S_{W}}{\sigma^{2}}$

E. Telatar: Capacity of multi-antenna Gaussian channels. *European Transactions on Telecommunications*, Bd. 10, S. 585-595, November-Dezember 1999.

Flachbandkabelkanalmodell

• Kanalmatrix: $\underline{\mathbf{H}} = \mathbf{E} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}$

- Rang: rang $(\underline{\mathbf{H}}) = R = N$
- Singulärwerte: $\sqrt{\lambda_q} = 1$

Kanalkapazität des Flachbandkabelkanals

- alle parallelen Kanäle gleich
 - \Rightarrow gleichmäßiges Aufteilen der Sendeleistung S optimal
 - \Rightarrow Kanalkapazität C mit und ohne senderseitiger Kanalkenntnis gleich

•
$$C = N \operatorname{ld} \left(1 + \frac{S}{N\sigma^2} \right)$$

• Grenzwert $N \to \infty$:

$$C_{\infty} = \lim_{N \to \infty} \left\{ \frac{\operatorname{ld} \left(1 + \frac{S}{N\sigma^2} \right)}{\frac{1}{N}} \right\} = \frac{S}{\sigma^2} \operatorname{ld}(e)$$

⇒ hier nur begrenzte Gewinne durch räumliches Multiplexen

Multiplexinggewinn des Flachbandkabelkanals

Multiplexinggewinn, Freiheitsgrade

- Pseudo-Signal-Rausch-Verhältnis (PSNR): $\gamma = \frac{s}{\sigma^2}$
- Kanalkapazität ohne senderseitiger Kanalkenntnis für große PSNR: $C = \sum_{r=1}^{R} \operatorname{Id} \left(1 + \frac{\lambda_r}{N} \gamma \right) \approx \sum_{r=1}^{R} \operatorname{Id} \left(\frac{\lambda_r}{N} \gamma \right) = R \operatorname{Id}(\gamma) + \sum_{n=1}^{R} \operatorname{Id} \left(\frac{\lambda_r}{N} \right)$
- Kanalkapazität mit senderseitiger Kanalkenntnis für große PSNR (es werden alle *R* Kanäle genutzt):

$$S_W = \frac{S}{R} + \frac{1}{R} \sum_{r=1}^R \frac{\sigma^2}{\lambda_r}$$
$$C = \sum_{r=1}^R \operatorname{ld}\left(\frac{\lambda_r S_W}{\sigma^2}\right) \approx \sum_{r=1}^R \operatorname{ld}\left(\frac{\lambda_r \gamma}{R}\right) = R \operatorname{ld}(\gamma) + \sum_{r=1}^R \operatorname{ld}\left(\frac{\lambda_r}{R}\right)$$

Betrachte die asymptotische Steigung der Kanalkapazitätskurve für große PSNR!

Multiplexinggewinn, Freiheitsgrade (Degrees of Freedom, DoF):

$$R = \lim_{\gamma \to \infty} \frac{C(\gamma)}{\operatorname{Id}(\gamma)}$$

Schlüssellochkanalmodell

D. Chizhik, G. J. Foschini, M. J. Gans, R. A. Valenzuela: Keyholes, correlations, and capacities of multielement transmit and receive antennas. *Wireless Communications, IEEE Transactions on*, Bd. 1, S. 361-368, April 2002.

Singulärwertzerlegung des Schlüssellochkanals

•
$$\sqrt{\lambda_1} = \left\|\underline{\mathbf{h}}^{(1)}\right\| \left\|\underline{\mathbf{h}}^{(2)}\right\|, \sqrt{\lambda_2} = \dots = \sqrt{\lambda_Q} = 0$$

- $\operatorname{rang}(\underline{\mathbf{H}}) = 1 \Rightarrow \operatorname{rangdefizitär!}$
- Die optimale Signalverarbeitung besteht aus sender- und empfängerseitiger signalangepasster Filterung.

Kanalkapazität des Schlüssellochkanals

• mit senderseitiger Kanalkenntnis:

$$C = \operatorname{ld}\left(1 + \frac{S \|\underline{\mathbf{h}}^{(1)}\|^2 \|\underline{\mathbf{h}}^{(2)}\|^2}{\sigma^2}\right)$$

- \Rightarrow sender- und empfängerseitige SNR-Gewinne
- ohne senderseitiger Kanalkenntnis:

$$C = \operatorname{ld}\left(1 + \frac{S \|\underline{\mathbf{h}}^{(1)}\|^2 \|\underline{\mathbf{h}}^{(2)}\|^2}{N\sigma^2}\right)$$

- ⇒ nur empfängerseitige SNR-Gewinne
- bei großen SNR: doppeltes SNR \Rightarrow 1 Bit Kanalkapazitätsgewinn

Kanalkapazität stochastischer Kanäle

instantane Kanalkapazität:

 $C_{\text{inst}} = \begin{cases} \sum_{r=1}^{R} \max\left\{0, \operatorname{ld}\left(\frac{\lambda_{r}S_{W}}{\sigma^{2}}\right)\right\} & \text{mit senderseitiger Kanalkenntnis} \\ \sum_{r=1}^{R} \operatorname{ld}\left(1 + \frac{\lambda_{r}S}{\sigma^{2}N}\right) & \text{ohne senderseitiger Kanalkenntnis} \end{cases}$

- komplementäre Verteilungsfunktion: $\Pr{C_{\text{inst}} > C} = \int_{C}^{\infty} p(C_{\text{inst}}) dC_{\text{inst}}$
- ergodische Kanalkapazität: $C_{\text{erg}} = \mathrm{E}\{C_{\text{inst}}\}$
- Outage-Kanalkapazität, Ausfallwahrscheinlichkeit Pout: $Pr\{C_{inst} < C_{out}\} = P_{out}$ $Pr{C_{inst} > C_{out}} = 1 - P_{out}$

komplementäre Verteilungsfunktion

Beispiel:

- N = M = 1
- $S/\sigma^2 = 4$
- $E\left\{\left|\underline{h}\right|^{2}\right\} = 1$
- Rayleigh-Kanal

Deterministische Kanalmodelle

geometrische Kanalmodelle

hier: Mikroarchitekturen, Gruppenantennen

- Ausfallsrichtung (Direction of Departure, DoD): $\beta_{Tx}^{(p)}$
- Einfallsrichtung (Direction of Arrival, DoA): $\beta_{Rx}^{(p)}$
- direktionale Kanalimpulsantwort: $\mathbf{\underline{h}}_{\mathrm{RP}}^{(p)}$

gleichartige gleich orientierte Antennen

wegen Reziprozität gilt analoges auch für die Senderseite

Gewichtsnetzwerk

phasenverschobenes gewichtetes Ansteuern, Gewichtsvektor:

$$\underline{\mathbf{w}}_{\mathrm{Tx}}^{*} = \begin{pmatrix} \underline{w}_{\mathrm{Tx}}^{(1)^{*}} & \dots & \underline{w}_{\mathrm{Tx}}^{(K_{\mathrm{Tx}})^{*}} \end{pmatrix}$$
$$\left\| \underline{\mathbf{w}}_{\mathrm{Tx}}^{*} \right\|^{2} = 1$$

phasenverschobenes gewichtetes Überlagern, Gewichtsvektor:

$$\underline{\mathbf{w}}_{\mathrm{Rx}}^{*} = \begin{pmatrix} \underline{w}_{\mathrm{Rx}}^{(1)^{*}} & \dots & \underline{w}_{\mathrm{Rx}}^{(K_{\mathrm{Rx}})^{*}} \end{pmatrix}$$
$$\left\| \underline{\mathbf{w}}_{\mathrm{Rx}}^{*} \right\|^{2} = 1$$

Antennengewinn

$$\underline{e}^{(k_{\text{Rx}})} = \underline{a}_{\text{Rx}}^{(k_{\text{Rx}})} \underline{e}_{RP}$$

$$\underline{e} = \sum_{k_{\text{Rx}}=1}^{K_{\text{Rx}}} \underline{w}_{\text{Rx}}^{(k_{\text{Rx}})^*} \underline{e}^{(k_{\text{Rx}})} = \sum_{k_{\text{Rx}}=1}^{K_{\text{Rx}}} \underline{w}_{\text{Rx}}^{(k_{\text{Rx}})^*} \underline{a}_{\text{Rx}}^{(k_{\text{Rx}})} \underline{e}_{\text{RP}}$$

$$\underline{e} = \underline{e}_{\text{RP}} \underline{w}_{\text{Rx}}^{*\text{T}} \cdot \underline{a}_{\text{Rx}}$$

Antennengewinn:

$$g_{\mathrm{Rx}} = \left|\underline{\mathbf{w}}_{\mathrm{Rx}}^{*\mathrm{T}} \cdot \underline{\mathbf{a}}_{\mathrm{Rx}}\right|^{2} = \underline{\mathbf{w}}_{\mathrm{Rx}}^{*\mathrm{T}} \cdot \underline{\mathbf{a}}_{\mathrm{Rx}} \cdot \underline{\mathbf{a}}_{\mathrm{Rx}}^{*\mathrm{T}} \cdot \underline{\mathbf{w}}_{\mathrm{Rx}}$$

wegen Reziprozität analog auch für Sendeantennen

Antennendiagramm

konventionelles Strahlformen

Maximiere den Antennengewinn $g_{\rm Rx}!$

- Schwarzsche Ungleichung: $g_{\text{Rx}} = \left| \underline{\mathbf{w}}_{\text{Rx}}^{*\text{T}} \cdot \underline{\mathbf{a}}_{\text{Rx}} \right|^2 \leq \left\| \underline{\mathbf{w}}_{\text{Rx}} \right\|^2 \left\| \underline{\mathbf{a}}_{\text{Rx}} \right\|^2$ mit Gleichheit für $\underline{\mathbf{w}}_{\text{Rx}} \sim \underline{\mathbf{a}}_{\text{Rx}}$ \Rightarrow wähle $\underline{\mathbf{w}}_{\text{Rx}} = \frac{\underline{\mathbf{a}}_{\text{Rx}}}{\| \underline{\mathbf{a}}_{\text{Rx}} \|}$
- entspricht Maximalverhältniskombinieren, signalangepasster Filterung
- analoges gilt wegen Reziprozität auch für die Senderseite

Impulsantwort

- direktionale Impulsantwort: <u>h</u>_{RP}
- räumliche Impulsantwort: $\underline{\mathbf{h}}^{(k_{\text{Rx}},k_{\text{Tx}})} = \underline{a}^{(k_{\text{Rx}})}_{\text{Rx}} \underline{a}^{(k_{\text{Tx}})}_{\text{Tx}} \underline{\mathbf{h}}_{\text{RP}}$

Kanalmatrix

- direktionale Kanalfaltungsmatrix: <u>H_{RP}</u>
- räumliche Kanalfaltungsmatrix: $\underline{\mathbf{H}}^{(k_{\text{Rx}},k_{\text{Tx}})} = \underline{a}_{\text{Rx}}^{(k_{\text{Rx}})} \underline{a}_{\text{Tx}}^{(k_{\text{Tx}})} \underline{\mathbf{H}}_{\text{RP}}$
- totale Kanalmatrix: $\underline{\mathbf{H}} = (\underline{\mathbf{a}}_{Rx} \cdot \underline{\mathbf{a}}_{Tx}^{T}) \otimes \underline{\mathbf{H}}_{RP}$

Kronecker-Produkt

Definition:

$$\begin{pmatrix} \underline{a}_{1,1} & \dots & \underline{a}_{1,N} \\ \vdots & & \vdots \\ \underline{a}_{M,1} & \dots & \underline{a}_{M,N} \end{pmatrix} \otimes \underline{\mathbf{B}} = \begin{pmatrix} \underline{a}_{1,1} \underline{\mathbf{B}} & \dots & \underline{a}_{1,N} \underline{\mathbf{B}} \\ \vdots & & \vdots \\ \underline{a}_{M,1} \underline{\mathbf{B}} & \dots & \underline{a}_{M,N} \underline{\mathbf{B}} \end{pmatrix}$$

Rechenregeln:

•
$$\underline{c}(\underline{\mathbf{A}} \otimes \underline{\mathbf{B}}) = (\underline{c}\underline{\mathbf{A}}) \otimes \underline{\mathbf{B}} = \underline{\mathbf{A}} \otimes (\underline{c}\underline{\mathbf{B}})$$

- $\underline{\mathbf{A}} \otimes (\underline{\mathbf{B}} \otimes \underline{\mathbf{C}}) = (\underline{\mathbf{A}} \otimes \underline{\mathbf{B}}) \otimes \underline{\mathbf{C}}$ (Assoziativgesetz)
- $(\underline{\mathbf{A}} \otimes \underline{\mathbf{B}})^{*T} = \underline{\mathbf{A}}^{*T} \otimes \underline{\mathbf{B}}^{*T}$
- $(\underline{\mathbf{A}} \otimes \underline{\mathbf{B}}) \cdot (\underline{\mathbf{C}} \otimes \underline{\mathbf{D}}) = (\underline{\mathbf{A}} \cdot \underline{\mathbf{C}}) \otimes (\underline{\mathbf{B}} \cdot \underline{\mathbf{D}})$
- $(\underline{\mathbf{A}} \otimes \underline{\mathbf{B}})^{-1} = \underline{\mathbf{A}}^{-1} \otimes \underline{\mathbf{B}}^{-1}$
- $(\underline{\mathbf{A}} + \underline{\mathbf{B}}) \otimes \underline{\mathbf{C}} = \underline{\mathbf{A}} \otimes \underline{\mathbf{C}} + \underline{\mathbf{B}} \otimes \underline{\mathbf{C}}$ (Distributivgesetz)
- $\underline{\mathbf{A}} \otimes (\underline{\mathbf{B}} + \underline{\mathbf{C}}) = \underline{\mathbf{A}} \otimes \underline{\mathbf{B}} + \underline{\mathbf{A}} \otimes \underline{\mathbf{C}}$ (Distributivgesetz)
- $\operatorname{vec}(\underline{\mathbf{A}} \cdot \underline{\mathbf{B}} \cdot \underline{\mathbf{C}}) = (\underline{\mathbf{C}}^{\mathrm{T}} \otimes \underline{\mathbf{A}}) \cdot \operatorname{vec}(\underline{\mathbf{B}})$

Singulärwertzerlegung (1)

Die Singulärwertzerlegung $\mathbf{H}_{RP} = \mathbf{U}_{RP} \cdot \Sigma_{RP} \cdot \mathbf{V}_{RP}^{*T}$

der direktionalen Kanalmatrix $\underline{\mathbf{H}}_{\mathrm{RP}}$ ist gegeben.

Dann folgt für die Singulärwertzerlegung der totalen Kanalmatrix $\underline{\mathbf{H}} = \underline{\mathbf{U}} \cdot \Sigma \cdot \underline{\mathbf{V}}^{*T}$:

 $\underline{\mathbf{U}} = \begin{pmatrix} \frac{1}{\|\underline{\mathbf{a}}_{Rx}\|} \underline{\mathbf{a}}_{Rx} \otimes \underline{\mathbf{U}}_{RP} & & & & \\ \text{orthonormale} \\ \text{Spalten} \end{pmatrix}$ $\Sigma = \|\underline{\mathbf{a}}_{Rx}\| \|\underline{\mathbf{a}}_{Tx}\| \begin{pmatrix} \Sigma_{RP} & \mathbf{0} \\ \vdots \\ \mathbf{0} & \dots & \mathbf{0} \end{pmatrix}$ $\underline{\mathbf{V}} = \begin{pmatrix} \frac{1}{\|\underline{\mathbf{a}}_{Tx}\|} \underline{\mathbf{a}}_{Tx}^* \otimes \underline{\mathbf{V}}_{RP} & & & \\ & & & \text{orthonormale} \\ & & & \text{spalten} \end{pmatrix}$

Singulärwertzerlegung (2) $\underline{\mathbf{U}} \cdot \boldsymbol{\Sigma} \cdot \underline{\mathbf{V}}^{*T}$

$$= \left(\frac{1}{\|\underline{\mathbf{a}}_{Rx}\|} \underline{\mathbf{a}}_{Rx} \otimes \underline{\mathbf{U}}_{RP} \dots\right) \cdot \|\underline{\mathbf{a}}_{Rx}\| \|\underline{\mathbf{a}}_{Tx}\| \begin{pmatrix} \Sigma_{RP} & \mathbf{0} \\ \vdots \\ \mathbf{0} & \vdots \end{pmatrix} \cdot \left(\frac{1}{\|\underline{\mathbf{a}}_{Rx}\|} \underline{\mathbf{a}}_{Tx}^{T} \otimes \underline{\mathbf{V}}_{RP}^{*T} \\ \mathbf{0} & \ldots & \mathbf{0} \end{pmatrix} \cdot \left(\frac{1}{\|\underline{\mathbf{a}}_{Rx}\|} \underline{\mathbf{a}}_{Tx}^{T} \otimes \underline{\mathbf{V}}_{RP}^{*T} \\ = \left(\underline{\mathbf{a}}_{Rx} \otimes \underline{\mathbf{U}}_{RP}\right) \cdot (\mathbf{1} \otimes \Sigma_{RP}) \cdot \left(\underline{\mathbf{a}}_{Tx}^{T} \otimes \underline{\mathbf{V}}_{Rx}^{*T}\right) \\ = \left(\underline{\mathbf{a}}_{Rx} \otimes \underline{\mathbf{U}}_{RP}\right) \cdot \left(\underline{\mathbf{a}}_{Tx}^{T} \otimes (\Sigma_{RP} \cdot \underline{\mathbf{V}}_{Rx}^{*T})\right) \\ = \left(\underline{\mathbf{a}}_{Rx} \cdot \underline{\mathbf{a}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{U}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{a}}_{Rx} \cdot \underline{\mathbf{a}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{U}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{a}}_{Rx} \cdot \underline{\mathbf{a}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{a}}_{Rx} \cdot \underline{\mathbf{a}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{a}}_{Rx} \cdot \underline{\mathbf{a}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{A}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{A}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{A}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{A}}_{Tx}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{V}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{H}}_{RX}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{H}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{H}}_{RX}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RP} \cdot \Sigma_{RP} \cdot \underline{\mathbf{H}}_{RP}^{*T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{H}}_{RX}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RY} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{Rx} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RY} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RY} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RY} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RY} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \otimes \left(\underline{\mathbf{H}}_{RY} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right) \\ = \left(\underline{\mathbf{H}}_{RX} \cdot \underline{\mathbf{H}}_{RY}^{T}\right)$$

Blockdiagramm der Entkopplung

Zeitliche und räumliche Signalverarbeitung sind hier separierbar!

Kanalkapazität

• mit senderseitiger Kanalkenntnis:

$$C = \sum_{r=1}^{R} \max\left\{0, \operatorname{ld}\left(\frac{\lambda_{r} S_{W}}{\sigma^{2}}\right)\right\} = \sum_{r=1}^{R_{RP}} \max\left\{0, \operatorname{ld}\left(\left\|\underline{a}_{Rx}\right\|^{2} \left\|\underline{a}_{Tx}\right\|^{2} \frac{\lambda_{RP, r} S_{W}}{\sigma^{2}}\right)\right\}$$

 \Rightarrow SNR-Gewinn durch sender- und empfängerseitiges Strahlformen

• ohne senderseitiger Kanalkenntnis:

$$C = \sum_{r=1}^{R} \operatorname{ld}\left(1 + \frac{\lambda_{r}S}{K_{\mathrm{Tx}}N_{\mathrm{RP}}\sigma^{2}}\right) = \sum_{r=1}^{R_{\mathrm{RP}}} \operatorname{ld}\left(1 + \left\|\underline{\mathbf{a}}_{\mathrm{Rx}}\right\|^{2} \frac{\left\|\underline{\mathbf{a}}_{\mathrm{Tx}}\right\|^{2}}{K_{\mathrm{Tx}}} \frac{\lambda_{\mathrm{RP},r}S}{N_{\mathrm{RP}}\sigma^{2}}\right)$$

⇒ SNR-Gewinn durch empfängerseitiges Strahlformen, erhöhen der Anzahl der Sendeantennen ergibt keinen Gewinn

- doppelte Antennenanzahl ⇒ doppeltes SNR
 → Kanalkanazitätaarhähung um ain Dit (hai graß)
 - \Rightarrow Kanalkapazitätserhöhung um ein Bit (bei großen SNR)

Beispiel: (2,4)-MIMO-Kanal

Beispiel, Systemstruktur

Beispiel, Antennendiagramme

Sendeantenne

Empfangsantenne

Kanalmodell mit mehreren Aus- und Einfallsrichtungen

• überlagere die Impulsantworten der einzelnen Pfade: $\underline{\mathbf{h}}^{(k_{\text{Rx}},k_{\text{Tx}})} = \sum_{p=1}^{P} \underline{a}_{\text{Rx}}^{(k_{\text{Rx}},p)} \underline{a}_{\text{Tx}}^{(k_{\text{Tx}},p)} \underline{\mathbf{h}}_{\text{RP}}^{(p)}$ $\underline{\mathbf{H}} = \sum_{p=1}^{P} \left(\underline{\mathbf{a}}_{\text{Rx}}^{(p)} \cdot \underline{\mathbf{a}}_{\text{Tx}}^{(p)^{\text{T}}} \right) \otimes \underline{\mathbf{H}}_{\text{RP}}^{(p)}$

• sowohl Strahlformungs- als auch Multiplexinggewinne möglich

Sonderfall: Single-Tap-Kanal

- empfängerseitige Steuermatrix: <u>A_{Rx}</u>
- senderseitige Steuermatrix: <u>A</u>_{Tx}
- $\operatorname{rang}(\underline{\mathbf{H}}) \leq \min\{N, M, P\}$
- Rich Scattering: $P \rightarrow \infty$, Rang nicht durch Pfadanzahl beschränkt

lineare zeitvariante Kanäle

Das Sendesignal s(t) lässt sich mit Hilfe der Ausblendeigenschaft des Diracimpulses darstellen als: $\underline{s}(t) = \int_{-\infty}^{+\infty} \underline{s}(t_0) \delta(t - t_0) dt_0$

> Linearkombination von Diracimpulsen zu Zeitpunkten $t_0 = -\infty \dots +\infty$

- $\underline{h}_0(t_0, t)$ bezeichne die Antwort des Kanals zum Zeitpunkt t auf einen Diracimpuls $\delta(t t_0)$ zum Zeitpunkt t_0 (Greensche Funktion).
- Die Antwort e(t) des linearen Kanals ist die entsprechende Linearkombination der Antworten auf die Diracimpulse: $\underline{e}(t) = \int_{-\infty}^{+\infty} \underline{s}(t_0) \underline{h}_0(t_0, t) dt_0$
- definiere Antwort auf einen Diracimpuls zum Zeitpunkt $t_0 = t \tau$, τ ist die Verzögerung: $\underline{h}(\tau, t) = \underline{h}_0(t - \tau, t)$ (zeitvariante Impulsantwort)
- es folgt:

 $\underline{e}(t) = \int_{-\infty}^{+\infty} \underline{s}(t-\tau) \underline{h}(\tau,t) d\tau$ (zeitvariantes Faltungsintegral)

Sonderfall: lineare zeitinvariante Kanäle

- Impulsantwort ist zeitinvariant: $\underline{h}(\tau, t) = \underline{h}(\tau)$
- es folgt für die Antwort des Kanals: $\underline{e}(t) = \int_{-\infty}^{+\infty} \underline{s}(t-\tau) \underline{h}(\tau) d\tau \text{ (Faltungsintegral)}$

deterministischer Kanalmodellierungsansatz

• ein einziger Ausbreitungspfad:

$$\underline{h}(\tau,t) = \underline{h}\delta\left(\tau - \tau_0 + \frac{v\cos(\varphi)}{c}t\right) e^{j2\pi f_0 \frac{v\cos(\varphi)}{c}t} \approx \underline{h}\delta(\tau - \tau_0) e^{j2\pi f_0 \frac{v\cos(\varphi)}{c}t}$$

• Dopplerfrequenz:

$$f_{\rm D} = f_0 \frac{v \cos(\varphi)}{c}$$

• Mehrwegeausbreitung:

$$\underline{h}(\tau,t) = \sum_{p=1}^{P} \underline{h}_{p} \delta\left(\tau - \tau_{p} + \frac{f_{\mathrm{D},p}}{f_{0}}t\right) \mathrm{e}^{\mathrm{j}2\pi f_{\mathrm{D},p}t} \approx \sum_{p=1}^{P} \underline{h}_{p} \delta\left(\tau - \tau_{p}\right) \mathrm{e}^{\mathrm{j}2\pi f_{\mathrm{D},p}t}$$

systemtheoretische Beschreibung

zeitvariante Impulsantwort

zeitvariante Übertragungsfunktion

$$\underline{H}(f,t) = \underline{h}_0 e^{-j2\pi f \tau_0} e^{j2\pi f_{D,0}t}$$
$$+ \underline{h}_1 e^{-j2\pi f \tau_1}$$
$$+ \underline{h}_2 e^{-j2\pi f \tau_2} e^{j2\pi f_{D,2}t}$$

Kanaleigenschaften

zeitdispersiv:

Die Verzögerungs-Doppler-Funktion und die Impulsantwort sind signifikant in Richtung der Verzögerung ausgedehnt. frequenzselektiv: Die Übertragungsfunktion und die Frequenz-Doppler-Funktion sind innerhalb der genutzten Bandbreite signifikant frequenzabhängig.

jeweils gleiche physikalische Ursache

- frequenzdispersiv: Die Verzögerungs-Doppler-Funktion und die Frequenz-Doppler-Funktion sind signifikant in Richtung der Dopplerfrequenz ausgedehnt.
- zeitvariant: Die Übertragungsfunktion und die Impulsantwort sind innerhalb der betrachteten Übertragungsdauer signifikant zeitabhängig

Stochastische Kanalmodelle

stochastische Kanalmodelle

Betrachte die Systemfunktionen als Musterfunktionen stochastischer Prozesse!

Falls die Systemfunktionswerte normalverteilt sind, sind die stochastischen Prozesse durch ihre Autokorrelationsfunktionen vollständig beschrieben.

- Betrachte Statistiken des Betrags der Kanalkoeffizienten und des Gewinns der Kanäle.
- Betrachte die Autokorrelationsfunktionen der vier Systemfunktionen.

M. Pätzold: *Mobile Radio Channels.* 2. Auflage, Chichester, UK: John Wiley & Sons, 2012, ISBN 978-0-470-51747-5.

Normalverteilung der Kanalkoeffizienten

Bei sehr großer (unendlicher) Anzahl unabhängiger gleichartiger Pfade (kein Line of Sight Pfad) sind die komplexen Kanalkoeffizienten <u>H</u> normalverteilt (zentraler Grenzwertsatz)!

Rayleigh-Verteilung der Kanalamplitude

- Transformationsfunktion: $H = |\underline{H}|$
- Wahrscheinlichkeitsdichtefunktion:

$$p_{\rm H}(H) = \begin{cases} \frac{2H}{\sigma_{\rm H}^2} e^{-\frac{H^2}{\sigma_{\rm H}^2}} & H > 0\\ 0 & \text{sonst} \end{cases}$$
(Rayleigh-Verteilung)

- Bezeichnung: Rayleigh-Kanal
- Erwartungswert: $E\{H\} = \frac{1}{2}\sqrt{\pi}\sigma_{H}$
- Varianz: $\operatorname{var}\{H\} = \left(1 - \frac{\pi}{4}\right)\sigma_{\mathrm{H}}^2$

Chi-Quadrat-Verteilung des Kanalgewinns

- Transformationsfunktion: $g = H^2 = |H|^2$
- Wahrscheinlichkeitsdichtefunktion:
 - $p_{g}(g) = \begin{cases} \frac{1}{\sigma_{H}^{2}} e^{-\frac{g}{\sigma_{H}^{2}}} & g > 0\\ 0 & \text{sonst} \end{cases}$ (Chi-Quadrat-Verteilung mit zwei Freiheitsgraden = Exponentialverteilung)
- Erwartungswert: $E\{g\} = \sigma_{H}^{2}$
- Varianz: $var{g} = \sigma_{H}^{4}$

Ausfallwahrscheinlichkeit des Rayleigh-Kanals

Verteilungsfunktion:

 $P_{\text{out}} = \Pr\{g < g_{\min}\} = 1 - e^{\frac{g_{\min}}{\sigma_{\text{H}}^2}}$

Kanalkapazität des Rayleigh-Kanals

- mittleres SNR:
 - $\bar{\gamma} = \frac{\sigma_{\rm H}^2 S}{\sigma^2}$
- komplementäre Verteilungsfunktion:

$$\Pr\{C_{\text{inst}} > C\} = \begin{cases} e^{-\frac{2^{C}-1}{\overline{\gamma}}} & C \ge 0\\ 1 & \text{sonst} \end{cases}$$

- Outage-Kanalkapazität: $C_{out} = ld(1 - \bar{\gamma} ln(1 - P_{out}))$
- ergodische Kanalkapazität:

$$\begin{split} & \mathcal{C}_{\text{erg}} = \frac{\mathrm{e}^{\frac{1}{\overline{\gamma}}}}{\ln(2)} \mathrm{E}_{1}\left(\frac{1}{\overline{\gamma}}\right) \\ & (\mathrm{E}_{1}: \text{Integralexponential funktion,} \\ & \text{expint in Matlab}) \end{split}$$

Kanal mit Line of Sight, Rice-Kanal

- zusätzlich Line of Sight Pfad: $\underline{H} = \underline{H}_{LOS} + \underline{H}_{NLOS}$
- Rice-Faktor:

$$K = \frac{|\underline{H}_{\text{LOS}}|^2}{\sigma_{\text{H}}^2} = \frac{\text{LOS-Gewinn}}{\text{NLOS-Gewinn}}$$

• falls die NLOS-Pfade unabhängig sind:

$$p_{\underline{H}}(\underline{H}) = \frac{1}{\pi \sigma_{\mathrm{H}}^{2}} e^{\frac{|\underline{H} - \underline{H}_{\mathrm{LOS}}|^{2}}{\sigma_{\mathrm{H}}^{2}}}$$
(Normalverteilung)
$$\underline{H} \sim \mathcal{CN} \{\underline{H}_{\mathrm{LOS}}, \sigma_{\mathrm{H}}^{2}\}$$

• Wahrscheinlichkeitsdichtefunktion der Kanalamplitude:

$$p_{\rm H}(H) = \begin{cases} \frac{2H}{\sigma_{\rm H}^2} I_0\left(\frac{2H\sqrt{K}}{\sigma_{\rm H}}\right) e^{-\frac{H^2}{\sigma_{\rm H}^2} - K} & H > 0\\ 0 & \text{sonst} \end{cases}$$

(Rice-Verteilung)

(I₀: modifizierte Besselfunktion erster Art und nullter Ordnung, besseli in Matlab)

5

 $\sigma_{\rm H}^2 = 1$

K = 5

4

K = 0 (Rayleigh)

K = 1

3

2

Η

0.8

0.6

0.4

0.2

()

 $p_{\rm H}(H)$

WSSUS-Kanalmodell

Annahmen:

- die stochastischen Prozesse seien bezüglich Frequenz *f* und Zeit *t* schwach stationär (Wide Sense Stationary)
 - \Rightarrow Korrelationsfunktionen hängen nur von der Frequenzdifferenz Δf und der Zeitdifferenz Δt ab
- die verschiedenen Pfade seien unkorreliert (**U**ncorrelated **S**cattering)
- \Rightarrow Wide Sense Stationary Uncorrelated Scattering (WSSUS) Kanal

P. Bello: Characterization of randomly time-variant linear channels. *Communications Systems, IEEE Transactions on*, Bd. 11, S. 360-393, Dezember 1963.

Frequenz-Zeit-Korrelationsfunktion $\underline{R}_{\rm HH}(f_1, f_2, t_1, t_2) = E\{\underline{H}^*(f_1, t_1)\underline{H}(f_2, t_2)\}$ $= E\{\underline{H}^*(f_1, t_1)\underline{H}(f_1 + \Delta f, t_1 + \Delta t)\}$ $\underline{H}(f, t)$ ist schwach stationär
bezüglich f und t= $\underline{R}_{\rm HH}(\Delta f, \Delta t)$

Frequenz–Zeit–Korrelationsfunktion

Verzögerungskreuzleistungsdichtespektrum

$$\frac{R_{\rm hh}(\tau_1,\tau_2,t_1,t_2) = E\{\underline{h}^*(\tau_1,t_1)\underline{h}(\tau_2,t_2)\}}{= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E\{\underline{H}^*(f_1,t_1)\underline{H}(f_2,t_2)\}e^{-j2\pi(f_1\tau_1-f_2\tau_2)}df_1 df_2 \\
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E\{\underline{H}^*(f_1,t_1)\underline{H}(f_1 + \Delta f,t_1 + \Delta t)\}e^{-j2\pi f_1(\tau_1-\tau_2)}e^{j2\pi\Delta f\tau_2}df_1 d\Delta f \\
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{R}_{\rm HH}(\Delta f,\Delta t)e^{-j2\pi f_1(\tau_1-\tau_2)}e^{j2\pi\Delta f\tau_2}df_1 d\Delta f \\
= \underbrace{\int_{-\infty}^{+\infty} \underline{R}_{\rm HH}(\Delta f,\Delta t)e^{j2\pi\Delta f\tau_2}d\Delta f}_{\underline{R}_{\rm hh}(\tau_2,\Delta t)} \qquad \delta(\tau_1 - \tau_2) \\
\text{Verzögerungskreuzleistungsdichtespektrum}$$

Stationarität bezüglich Frequenz $f \Leftrightarrow$ unkorrelierte Streuung bezüglich Verzögerung τ

 $\begin{aligned} & \underline{R}_{UU}(f_{1}, f_{2}, f_{D,1}, f_{D,2}) = E\{\underline{U}^{*}(f_{1}, f_{D,1})\underline{U}(f_{2}, f_{D,2})\} \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E\{\underline{H}^{*}(f_{1}, t_{1})\underline{H}(f_{2}, t_{2})\} e^{j2\pi(f_{D,1}t_{1}-f_{D,2}t_{2})} dt_{1} dt_{2} \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E\{\underline{H}^{*}(f_{1}, t_{1})\underline{H}(f_{1} + \Delta f, t_{1} + \Delta t)\} e^{j2\pi(f_{D,1}-f_{D,2})t_{1}} e^{-j2\pi f_{D,2}\Delta t} dt_{1} d\Delta t \\ &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{R}_{HH}(\Delta f, \Delta t) e^{j2\pi(f_{D,1}-f_{D,2})t_{1}} e^{-j2\pi f_{D,2}\Delta t} dt_{1} d\Delta t \\ &= \underbrace{\int_{-\infty}^{+\infty} \underline{R}_{HH}(\Delta f, \Delta t) e^{-j2\pi f_{D,2}\Delta t} d\Delta t}_{\underline{R}_{UU}(\Delta f, f_{D,2})} \delta(f_{D,1} - f_{D,2}) \\ & \text{Dopplerkreuzleistungsdichtespektrum} \end{aligned}$

Stationarität bezüglich Zeit $t \Leftrightarrow$ unkorrelierte Streuung bezüglich Dopplerfrequenz $f_{\rm D}$

Streufunktion

$$\frac{R_{\rm VV}(\tau_{1},\tau_{2},f_{\rm D,1},f_{\rm D,2}) = E\{\underline{V}^{*}(\tau_{1},f_{\rm D,1})\underline{V}(\tau_{2},f_{\rm D,2})\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E\{\underline{h}^{*}(\tau_{1},t_{1})\underline{h}(\tau_{2},t_{2})\}e^{j2\pi(f_{\rm D,1}t_{1}-f_{\rm D,2}t_{2})}dt_{1} dt_{2} \\
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E\{\underline{h}^{*}(\tau_{1},t_{1})\underline{h}(\tau_{2},t_{1}+\Delta t)\}e^{j2\pi(f_{\rm D,1}-f_{\rm D,2})t_{1}}e^{-j2\pi f_{\rm D,2}\Delta t}dt_{1} d\Delta t \\
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{R}_{\rm hh}(\tau_{2},\Delta t)\delta(\tau_{1}-\tau_{2})e^{j2\pi(f_{\rm D,1}-f_{\rm D,2})t_{1}}e^{-j2\pi f_{\rm D,2}\Delta t}dt_{1} d\Delta t \\
= \underbrace{\int_{-\infty}^{+\infty} \underline{R}_{\rm hh}(\tau_{2},\Delta t)e^{-j2\pi f_{\rm d,2}\Delta t}}_{R_{\rm VV}(\tau_{2},f_{\rm D,2})}\delta(\tau_{1}-\tau_{2})\delta(f_{\rm D,1}-f_{\rm D,2}) \\$$
Streufunktion

Die Streufunktion ist aufgrund der Symmetrie $\underline{R}_{hh}(\tau, \Delta t) = \underline{R}_{hh}^*(\tau, -\Delta t)$ des Verzögerungskreuzleistungsdichtespektrums reell!

Frequenz-Korrelationsfunktion

- Frequenz-Korrelationsfunktion: $\underline{R}_{\rm HH}(\Delta f, 0) = \int_{-\infty}^{+\infty} \underline{R}_{\rm UU}(\Delta f, f_{\rm D}) df_{\rm D}$
- Kohärenzbandbreite $B_{\rm C}$: $\left|\frac{R_{\rm HH}}{R_{\rm HH}}\left(\frac{B_{\rm C}}{2},0\right)\right| = \frac{1}{2}\left|\frac{R_{\rm HH}}{R_{\rm HH}}(0,0)\right|$ Halbwertsbreite der Frequenz-Korrelationsfunktion

Verzögerungsleistungsdichtespektrum

• Verzögerungsleistungsdichtespektrum: $R_{\rm hh}(\tau, 0) = \int_{-\infty}^{+\infty} R_{\rm VV}(\tau, f_{\rm D}) df_{\rm D}$ (ist reell)

• Verzögerungsspreizung:
$$T_{\rm M} = \sqrt{\frac{\int_{-\infty}^{+\infty} (\tau - \bar{\tau})^2 R_{\rm hh}(\tau, 0) d\tau}{\int_{-\infty}^{+\infty} R_{\rm hh}(\tau, 0) d\tau}} \approx \frac{1}{B_{\rm C}} \, {\rm mit} \, \bar{\tau} = \frac{\int_{-\infty}^{+\infty} \tau R_{\rm hh}(\tau, 0) d\tau}{\int_{-\infty}^{+\infty} R_{\rm hh}(\tau, 0) d\tau}$$

Wurzel des zweiten Zentralmoments des normierten Verzögerungsleistungsdichtespektrums

Zeit-Korrelationsfunktion

- Zeit-Korrelationsfunktion: $\underline{R}_{\rm HH}(0,\Delta t) = \int_{-\infty}^{+\infty} \underline{R}_{\rm hh}(\tau,\Delta t) d\tau$
- Korrelationsdauer $T_{\rm C}$: $\left|\frac{R_{\rm HH}}{(0, \frac{T_{\rm C}}{2})}\right| = \frac{1}{2} \left|\frac{R_{\rm HH}}{(0, 0)}\right|$ Halbwertsbreite der Zeit-Korrelationsfunktion

Dopplerleistungsdichtespektrum

- Dopplerleistungsdichtespektrum: $R_{UU}(0, f_D) = \int_{-\infty}^{+\infty} R_{VV}(\tau, f_D) d\tau$ (ist reell)
- Dopplerspreizung: $B_{\rm D} = \sqrt{\frac{\int_{-\infty}^{+\infty} (f_{\rm D} \overline{f}_{\rm D})^2 R_{\rm UU}(0, f_{\rm D}) df_{\rm D}}{\int_{-\infty}^{+\infty} R_{\rm UU}(0, f_{\rm D}) df_{\rm D}}} \approx \frac{1}{T_{\rm C}} \operatorname{mit} \overline{f}_{\rm D} = \frac{\int_{-\infty}^{+\infty} f_{\rm d} R_{\rm UU}(0, f_{\rm D}) df_{\rm D}}{\int_{-\infty}^{+\infty} R_{\rm UU}(0, f_{\rm D}) df_{\rm D}}$

Wurzel des zweiten Zentralmoments des normierten Dopplerleistungsdichtespektrums

mittlerer Kanalgewinn

• Definition:

$$\sigma_{\rm H}^2 = {\rm E}\left\{\left|\underline{H}(f,t)\right|^2\right\} = {\rm E}\left\{\underline{H}^*(f,t)\underline{H}(f,t)\right\}$$

- aus Frequenz-Zeit-Korrelationsfunktion: $\sigma_{\rm H}^2 = \underline{R}_{\rm HH}(0,0)$
- aus Verzögerungsleistungsdichtespektrum: $\sigma_{\rm H}^2 = \int_{-\infty}^{+\infty} \underline{R}_{\rm hh}(\tau, 0) d\tau$
- aus Dopplerleistungsdichtespektrum: $\sigma_{\rm H}^2 = \int_{-\infty}^{+\infty} \underline{R}_{\rm UU}(0, f_{\rm D}) df_{\rm D}$
- aus Streufunktion: $\sigma_{\rm H}^2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} R_{\rm VV}(\tau, f_{\rm D}) d\tau df_{\rm D}$

Übersicht: WSSUS-Kanalmodell

Verzögerungsleistungsdichtespektren nach COST207

COST = European Cooperation in the Field of Scientific and Technical Research GSM 05.05: *Radio transmission and reception*

Dopplerleistungsdichtespektrum nach Jakes (1)

Nehme an, dass die Einfallsrichtungen gleichverteilt sind!

Zufallsvariablentransformation: $f_{\rm D} = \frac{vf_0}{c}\cos(\varphi) = f_{\rm D,max}\cos(\varphi), \frac{df_{\rm D}}{d\varphi} = -f_{\rm D,max}\sin(\varphi)$ Wahrscheinlichkeitsdichtefunktion: $p_{\rm f_D}(f_{\rm D}) = \frac{p_{\varphi}(\varphi_1)}{\left|\frac{df_{\rm D}}{d\varphi}\right|_{\varphi_1}} + \frac{p_{\varphi}(\varphi_2)}{\left|\frac{df_{\rm D}}{d\varphi}\right|_{\varphi_2}} \quad \text{mit } \varphi = \varphi_1 = -\varphi_2$ $= \frac{1}{\pi f_{\rm D,max}|\sin(\varphi)|} = \frac{1}{\pi f_{\rm D,max}\sqrt{\sin^2(\varphi)}} = \frac{1}{\pi f_{\rm D,max}\sqrt{1-\cos^2(\varphi)}}$ $p_{\rm f_D}(f_{\rm D}) = \begin{cases} \frac{1}{\pi f_{\rm D,max}} \sqrt{1-\left(\frac{f_{\rm D}}{f_{\rm D,max}}\right)^2} & -f_{\rm D,max} \leq f_{\rm D} \leq f_{\rm D,max} \end{cases}$ $p_{\rm f_D}(f_{\rm D}) = \begin{cases} \frac{1}{\pi f_{\rm D,max}} \sqrt{1-\left(\frac{f_{\rm D}}{f_{\rm D,max}}\right)^2} & -f_{\rm D,max} \leq f_{\rm D} \leq f_{\rm D,max} \end{cases}$

(Jakes-Spektrum)

Dopplerleistungsdichtespektrum nach Jakes (2)

normierte Kanalimpulsantwort nach COST207

normierte Kanalübertragungsfunktion nach COST207

Kanalschätzen

Systemmodell für zeitbegrenzte Testsignale

Systemmatrix **G** ist eine Faltungsmatrix, hat Toeplitz-Struktur

$$\underbrace{\begin{pmatrix}\underline{e}_{0}\\\underline{e}_{1}\\\vdots\\\underline{e}_{N-1}\end{pmatrix}}_{\underline{e}} = \underbrace{\begin{pmatrix}\underline{s}_{0} & \underline{s}_{N-1} & \ddots & \underline{s}_{N-W+1}\\\underline{s}_{1} & \underline{s}_{0} & \ddots & \vdots\\\vdots\\\underline{s}_{N-1} & \vdots & \ddots & \underline{s}_{N-W-1}\\\underline{s}_{N-1} & \vdots & \ddots & \underline{s}_{N-W}\end{pmatrix}}_{\underline{\mathbf{G}}} \cdot \underbrace{\begin{pmatrix}\underline{h}_{0}\\\underline{h}_{1}\\\vdots\\\underline{h}_{W-1}\end{pmatrix}}_{\underline{\mathbf{h}}} + \underbrace{\begin{pmatrix}\underline{n}_{0}\\\underline{n}_{1}\\\vdots\\\underline{n}_{N-1}\end{pmatrix}}_{\underline{\mathbf{n}}}, M = N$$

Systemmatrix <u>G</u> ist eine zyklische Faltungsmatrix, hat Toeplitz-Struktur

Systemmodell für Mehrsenderszenarien

In Mehrsenderszenarien kann die Kanalschätzung separat an jedem Empfänger erfolgen.

Kanalschätzaufgabe

Systemmodell:

 $\underline{\mathbf{e}} = \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{n}}$

Der Beobachtungsvektor <u>e</u> ist eine durch die $M \times W$ Systemmatrix <u>G</u> beschriebene lineare Funktion des Kanalvektors <u>h</u>!

- Die Empfangssignatur des w-ten Kanalkoeffizienten <u>h</u>w entspricht der w-ten Spalte <u>G</u>w der Systemmatrix <u>G</u>.
- Die Anzahl W der Unbekannten soll nicht größer als Anzahl M der Bekannten sein.
- häufig weißes Gauß-Rauschen <u>n</u> angenommen

Schätzaufgabe:

Bestimme basierend auf dem bekannten Beobachtungsvektor \underline{e} und dem bekannten Systemmodell eine bestmögliche Schätzung $\underline{\hat{h}}$ des Kanalvektors \underline{h} !

• Viele verschiedene sinnvolle Gütekriterien sind denkbar.

 \Rightarrow Vielzahl an Schätzalgorithmen

S. M. Kay: *Fundamentals of Statistical Signal Processing: Estimation Theory.* Upper Saddle River, NJ: Prentice Hall, 1993, ISBN 0-13-345711-7.

Kanalschätzprinzipien

• Maximum-a-posteriori-Prinzip: suche den am wahrscheinlichsten vorliegenden Kanalvektor $\hat{\mathbf{h}}$

$$\begin{split} & \underline{\hat{\mathbf{h}}} = \operatorname*{argmax}_{\underline{\mathbf{h}}} \{ p(\underline{\mathbf{h}} | \underline{\mathbf{e}}) \} \\ & = \operatorname*{argmax}_{\underline{\mathbf{h}}} \{ \frac{p(\underline{\mathbf{e}} | \underline{\mathbf{h}}) p(\underline{\mathbf{h}})}{p(\underline{\mathbf{e}})} \} \\ & = \operatorname*{argmax}_{\underline{\mathbf{h}}} \{ p(\underline{\mathbf{e}} | \underline{\mathbf{h}}) p(\underline{\mathbf{h}}) \} \end{split}$$

 $p(\underline{\mathbf{h}})$: a-priori-Wahrscheinlichkeitsdichte

 Maximum-Likelihood-Prinzip: suche den Kanalvektor <u>h</u>, der am besten zum Empfangssignal passt

$$\underline{\hat{\mathbf{h}}} = \underset{\underline{\mathbf{h}}}{\operatorname{argmax}} \{ p(\underline{\mathbf{e}} | \underline{\mathbf{h}}) \} = \underset{\underline{\mathbf{h}}}{\operatorname{argmax}} \{ p(\underline{\mathbf{n}} = \underline{\mathbf{e}} - \underline{\mathbf{G}} \cdot \underline{\mathbf{h}}) \}$$

Maximum-Likelihood-Kanalschätzer (ML)

- allgemeiner Ansatz: $\underline{\hat{\mathbf{h}}} = \underset{\underline{\mathbf{h}}}{\operatorname{argmax}} \{ p(\underline{\mathbf{n}} = \underline{\mathbf{e}} - \underline{\mathbf{G}} \cdot \underline{\mathbf{h}}) \}$
- weißes Gauß-Rauschen:

$$\begin{split} & \underline{\hat{\mathbf{h}}} = \operatorname*{argmax}_{\underline{\mathbf{h}}} \left\{ \frac{1}{(\pi\sigma^2)^M} e^{-\frac{1}{\sigma^2} \left\| \underline{\mathbf{e}} - \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} \right\|^2} \right\} \text{Likelihood-Funktion} \\ &= \operatorname*{argmin}_{\underline{\mathbf{h}}} \left\{ \left\| \underline{\mathbf{e}} - \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} \right\|^2 \right\} \text{Log-Likelihood-Funktion} \\ &= \operatorname*{argmin}_{\underline{\mathbf{h}}} \left\{ \underline{\mathbf{e}}^{*\mathrm{T}} \cdot \underline{\mathbf{e}} - \underline{\mathbf{h}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{e}} - \underline{\mathbf{e}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{h}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} \right\} \end{split}$$

Im Fall von weißem Gauß-Rauschen entspricht der Maximum-Likelihood-Schätzer einem Least-Squares-Schätzer!

Least-Squares-Kanalschätzer (LS)

- Pseudolösung des überbestimmten linearen Gleichungssystems $\underline{\mathbf{e}} = \underline{\mathbf{G}} \cdot \underline{\mathbf{h}}$ (Gauß-Schätzer)
- quadratischer Rekonstruktionsfehler:

$$\left|\underline{\mathbf{e}} - \underline{\mathbf{G}} \cdot \underline{\mathbf{h}}\right\|^{2} = \underline{\mathbf{e}}^{*\mathrm{T}} \cdot \underline{\mathbf{e}} - \underline{\mathbf{e}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} - \underline{\mathbf{h}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{e}} + \underline{\mathbf{h}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}} \cdot \underline{\mathbf{h}}$$

Umformung mit quadratischer Ergänzung ergibt: $\left\|\underline{\mathbf{e}} - \underline{\mathbf{G}} \cdot \underline{\mathbf{h}}\right\|^{2} = \left(\underline{\mathbf{h}} - \left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}\right)^{-1} \cdot \underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{e}}\right)^{*T} \cdot \underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}} \cdot \left(\underline{\mathbf{h}} - \left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}\right)^{-1} \cdot \underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{e}}\right)$ $-\underline{\mathbf{e}}^{*T} \cdot \underline{\mathbf{G}} \cdot \left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}\right)^{-1} \cdot \underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{e}} + \underline{\mathbf{e}}^{*T} \cdot \underline{\mathbf{e}}$

• für den optimalen Schätzer gilt offensichtlich ($\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}$ ist positiv semidefinit):

$$\underline{\hat{\mathbf{h}}} = \underbrace{\left(\underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}\right)^{-1} \cdot \underline{\mathbf{G}}^{*\mathrm{T}}}_{\underline{\mathbf{D}}_{\mathrm{LS}}} \cdot \underline{\mathbf{e}} \xrightarrow{\underline{\mathbf{e}}} \underbrace{\underline{\mathbf{G}}^{*\mathrm{T}}}_{\mathrm{Signalangepasstes}} \xrightarrow{\underline{\mathbf{G}}^{*\mathrm{T}}}_{\mathrm{Filter}} \xrightarrow{\underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}}^{-1} \underbrace{\underline{\hat{\mathbf{h}}}}_{\mathrm{Dekorrelator}} \xrightarrow{\underline{\mathbf{h}}}$$

Eigenschaften des LS-Kanalschätzers

linearer durch die Matrix

 $\underline{\mathbf{D}}_{LS} = \left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}\right)^{-1} \cdot \underline{\mathbf{G}}^{*T} \text{ (linke Pseudoinverse)}$ beschriebener Schätzer

- Die Schätzmatrix $\underline{\mathbf{D}}_{LS}$ kann offline berechnet werden.
- Der Schätzer ist erwartungstreu: E{<u><u>h</u>} = E{(<u>G</u>^{*T} · <u>G</u>)⁻¹ · <u>G</u>^{*T} · (<u>G</u> · <u>h</u> + <u>n</u>)} = <u>h</u> + E{(<u>G</u>^{*T} · <u>G</u>)⁻¹ · <u>G</u>^{*T} · <u>n</u>} = <u>h</u> Keine systematischen Schätzfehler vorhanden!

 </u>
- entspricht signalangepasster Filterung falls nur ein einziger Kanalkoeffizient W = 1 oder Empfangssignaturen orthogonal ($\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}$ ist Diagonalmatrix):

$$\underline{\mathbf{D}}_{\mathrm{MF}} = \left(\mathrm{diag}\left(\underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{G}}\right)\right)^{-1} \cdot \underline{\mathbf{G}}^{*\mathrm{T}} = \begin{pmatrix} \ddots & & 0\\ & \frac{1}{\left|\underline{\mathbf{G}}_{w}\right|^{2}} & \\ 0 & & \ddots \end{pmatrix} \cdot \underline{\mathbf{G}}^{*\mathrm{T}}$$

Energieeffizienz

- Die Empfangssignatur <u>G</u>, des w-ten Kanalkoeffizienten <u>h</u>, entspricht der w-ten Spalte der Systemmatrix <u>G</u>.
- SNR MF:

$$\gamma_{w,MF} = \frac{\|\underline{\mathbf{G}}_{w}\|^{2} \mathbf{E}\{|\underline{h}_{w}|^{2}\}}{\sigma^{2}} = \frac{[\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{G}}]_{w,w} \mathbf{E}\{|\underline{h}_{w}|^{2}\}}{\sigma^{2}}$$

SNR LS:

$$\gamma_{w,\text{LS}} = \frac{\text{E}\left\{\left|\underline{h}_{w}\right|^{2}\right\}}{\sigma^{2}\left[\underline{\mathbf{D}}_{\text{LS}}\cdot\underline{\mathbf{D}}_{\text{LS}}^{*\text{T}}\right]_{w,w}} = \frac{\text{E}\left\{\left|\underline{h}_{w}\right|^{2}\right\}}{\sigma^{2}\left[\left(\underline{\mathbf{G}}^{*\text{T}}\cdot\underline{\mathbf{G}}\right)^{-1}\right]_{w,w}}$$

• Energieeffizienz:

$$\varepsilon_{w} = \frac{\gamma_{w,\text{LS}}}{\gamma_{w,\text{MF}}} = \frac{1}{\left[\underline{\mathbf{G}}^{*\text{T}} \cdot \underline{\mathbf{G}}\right]_{w,w} \left[\left(\underline{\mathbf{G}}^{*\text{T}} \cdot \underline{\mathbf{G}}\right)^{-1}\right]_{w,w}} \le 1$$

aufwandsgünstiges Kanalschätzen im Frequenzbereich

- Voraussetzung: Systemmatrix <u>G</u> ist eine quadratische zyklische Faltungsmatrix (periodisches Testsignal, Periodendauer N = M gleich Kanalimpulsantwortdauer W)
- Die zyklische Faltung im Zeitbereich entspricht einer elementweisen Multiplikation im Frequenzbereich:

$$\underline{\mathbf{F}} \cdot \underline{\mathbf{e}} = \underbrace{\underline{\mathbf{F}} \cdot \underline{\mathbf{G}} \cdot \underline{\mathbf{F}}^{-1}}_{\Lambda} \cdot \underline{\mathbf{F}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{F}} \cdot \underline{\mathbf{n}}$$

 $\underline{\Lambda}$ ist eine Diagonalmatrix!

- Falls $\underline{\mathbf{n}}$ im Zeitbereich weiß ist, dann ist auch $\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}$ im Frequenzbereich weiß: $E\left\{\left(\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}\right) \cdot \left(\underline{\mathbf{F}} \cdot \underline{\mathbf{n}}\right)^{*T}\right\} = \underline{\mathbf{F}} \cdot \underbrace{E\left\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T}\right\}}_{\sigma^{2}\mathbf{F}} \cdot \underline{\mathbf{F}}^{*T} = \sigma^{2}\underline{\mathbf{F}} \cdot \underline{\mathbf{F}}^{*T} = \sigma^{2}\mathbf{E}$
- LS-Schätzung von $\underline{\mathbf{F}} \cdot \underline{\mathbf{h}}$: $\underline{\widehat{\mathbf{F}} \cdot \underline{\mathbf{h}}} = \underline{\Lambda}^{-1} \cdot \underline{\mathbf{F}} \cdot \underline{\mathbf{e}}$
- LS-Schätzung von <u>h</u>: $\underline{\hat{\mathbf{h}}} = \underline{\mathbf{F}}^{-1} \cdot \underline{\widehat{\mathbf{F}}} \cdot \underline{\mathbf{h}} = \underline{\mathbf{F}}^{-1} \cdot \underline{\Lambda}^{-1} \cdot \underline{\mathbf{F}} \cdot \underline{\mathbf{e}}$

Minimum-Mean-Square-Error-Kanalschätzer (MMSE)

$$\underline{\mathbf{D}}_{\text{MMSE}} \cdot \underline{\mathbf{R}}_{\text{ee}} - \underline{\mathbf{R}}_{\text{he}} = 0 \Longrightarrow \underline{\mathbf{D}}_{\text{MMSE}} = \underline{\mathbf{R}}_{\text{he}} \cdot \underline{\mathbf{R}}_{\text{ee}}^{-1}$$

 $\underline{\hat{\mathbf{h}}} = \underline{\mathbf{R}}_{\mathrm{he}} \cdot \underline{\mathbf{R}}_{\mathrm{ee}}^{-1} \cdot \underline{\mathbf{e}}$

Eigenschaften des MMSE-Kanalschätzers

- Restfehler: $E\left\{\left\|\underline{\hat{\mathbf{h}}} - \underline{\mathbf{h}}\right\|^{2}\right\} = sp\left(\underline{\mathbf{R}}_{hh} - \underline{\mathbf{R}}_{he} \cdot \underline{\mathbf{R}}_{ee}^{-1} \cdot \underline{\mathbf{R}}_{he}^{*T}\right)$
- Orthogonalitätseigenschaft (Restfehler und Empfangsvektor sind unkorreliert):

$$E\left\{\underbrace{(\underline{\mathbf{D}}_{MMSE} \cdot \underline{\mathbf{e}} - \underline{\mathbf{h}})}_{Schätzfehler} \cdot \underline{\mathbf{e}}^{*T}\right\} = E\left\{\underline{\mathbf{D}}_{MMSE} \cdot \underline{\mathbf{e}} \cdot \underline{\mathbf{e}}^{*T} - \underline{\mathbf{h}} \cdot \underline{\mathbf{e}}^{*T}\right\}$$

$$= \underline{\mathbf{D}}_{\text{MMSE}} \cdot \underline{\mathbf{R}}_{\text{ee}} - \underline{\mathbf{R}}_{\text{he}} = \underline{\mathbf{R}}_{\text{he}} \cdot \underline{\mathbf{R}}_{\text{ee}}^{-1} \cdot \underline{\mathbf{R}}_{\text{ee}} - \underline{\mathbf{R}}_{\text{he}} = \mathbf{0}$$

• Orthogonalitätseigenschaft (Restfehler und Schätzung sind unkorreliert):

$$E\left\{\underbrace{\left(\underline{\mathbf{D}}_{MMSE} \cdot \underline{\mathbf{e}} - \underline{\mathbf{h}}\right)}_{Schätzfehler} \cdot \underbrace{\left(\underline{\mathbf{D}}_{MMSE} \cdot \underline{\mathbf{e}}\right)}_{\underline{\mathbf{h}}}^{*T}\right\} = E\left\{\left(\underline{\mathbf{D}}_{MMSE} \cdot \underline{\mathbf{e}} - \underline{\mathbf{h}}\right) \cdot \underline{\mathbf{e}}^{*T} \cdot \underline{\mathbf{D}}_{MMSE}^{*T}\right\}$$
$$= E\left\{\left(\underline{\mathbf{D}}_{MMSE} \cdot \underline{\mathbf{e}} - \underline{\mathbf{h}}\right) \cdot \underline{\mathbf{e}}^{*T}\right\} \cdot \underline{\mathbf{D}}_{MMSE}^{*T} = \mathbf{0}$$

MMSE-Kanalschätzer für lineares Systemmodell

- lineares Systemmodell: $\underline{\mathbf{e}} = \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{n}}$
- Korrelationsmatrizen:

$$\underline{\mathbf{R}}_{he} = E\left\{\underline{\mathbf{h}} \cdot \left(\underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{n}}\right)^{*T}\right\} = E\left\{\underline{\mathbf{h}} \cdot \underline{\mathbf{h}}^{*T} \cdot \underline{\mathbf{G}}^{*T} + \underline{\mathbf{h}} \cdot \underline{\mathbf{n}}^{*T}\right\} = \underline{\mathbf{R}}_{hh} \cdot \underline{\mathbf{G}}^{*T}$$
$$\underline{\mathbf{R}}_{ee} = E\left\{\left(\underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{n}}\right) \cdot \left(\underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{n}}\right)^{*T}\right\}$$
$$= E\left\{\underline{\mathbf{G}} \cdot \underline{\mathbf{h}} \cdot \underline{\mathbf{h}}^{*T} \cdot \underline{\mathbf{G}}^{*T} + \underline{\mathbf{n}} \cdot \underline{\mathbf{h}}^{*T} \cdot \underline{\mathbf{G}}^{*T} + \underline{\mathbf{G}} \cdot \underline{\mathbf{h}} \cdot \underline{\mathbf{n}}^{*T} + \underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^{*T}\right\}$$
$$= \underline{\mathbf{G}} \cdot \underline{\mathbf{R}}_{hh} \cdot \underline{\mathbf{G}}^{*T} + \underline{\mathbf{R}}_{nn}$$

• MMSE-Schätzer:

$$\underline{\hat{\mathbf{h}}} = \underline{\mathbf{R}}_{hh} \cdot \underline{\mathbf{G}}^{*T} \cdot \left(\underline{\mathbf{G}} \cdot \underline{\mathbf{R}}_{hh} \cdot \underline{\mathbf{G}}^{*T} + \underline{\mathbf{R}}_{nn}\right)^{-1} \cdot \underline{\mathbf{e}}$$

Umformung mit Matrixinversionslemma (falls <u>**R**</u>_{hh} nicht singulär):

$$\underline{\hat{\mathbf{h}}} = \left(\underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{R}}_{\mathrm{nn}}^{-1} \cdot \underline{\mathbf{G}} + \underline{\mathbf{R}}_{\mathrm{hh}}^{-1}\right)^{-1} \cdot \underline{\mathbf{G}}^{*\mathrm{T}} \cdot \underline{\mathbf{R}}_{\mathrm{nn}}^{-1} \cdot \underline{\mathbf{e}}$$

Eigenschaften des MMSE-Kanalschätzers

hier speziell Eigenschaften bei vorliegen eines linearen Systemmodells

• Restfehler (unter Verwendung des Matrixinversionslemmas): $E \left\{ \left\| \underline{\hat{h}} - \underline{h} \right\|^{2} \right\} = sp(\underline{R}_{hh} - \underline{R}_{he} \cdot \underline{R}_{ee}^{-1} \cdot \underline{R}_{he}^{*T})$ $= sp(\underline{R}_{hh} - \underline{R}_{hh} \cdot \underline{G}^{*T} \cdot (\underline{G} \cdot \underline{R}_{hh} \cdot \underline{G}^{*T} + \underline{R}_{nn})^{-1} \cdot \underline{G} \cdot \underline{R}_{hh})$ $= sp((\underline{R}_{hh}^{-1} + \underline{G}^{*T} \cdot \underline{R}_{nn}^{-1} \cdot \underline{G})^{-1})$

• im allgemeinen nicht erwartungstreu:

$$E\{\hat{\mathbf{h}}\} = E\left\{\left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{R}}_{nn}^{-1} \cdot \underline{\mathbf{G}} + \underline{\mathbf{R}}_{hh}^{-1}\right)^{-1} \cdot \underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{R}}_{nn}^{-1} \cdot \left(\underline{\mathbf{G}} \cdot \underline{\mathbf{h}} + \underline{\mathbf{n}}\right)\right\}$$

$$= \left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{R}}_{nn}^{-1} \cdot \underline{\mathbf{G}} + \underline{\mathbf{R}}_{hh}^{-1}\right)^{-1} \left(\underline{\mathbf{G}}^{*T} \cdot \underline{\mathbf{R}}_{nn}^{-1} \cdot \underline{\mathbf{G}}\right) \cdot \underline{\mathbf{h}} \neq \underline{\mathbf{h}}$$

Grenzfälle des MMSE-Kanalschätzers

MMSE-Schätzer für weißes Rauschen <u>R</u>_{nn} = σ²E: <u><u>h</u> = <u>R</u>_{hh} · <u>G</u>^{*T} · (<u>G</u> · <u>R</u>_{hh} · <u>G</u>^{*T} + σ²E)⁻¹ · <u>e</u> = (<u>G</u>^{*T} · <u>G</u> + σ²<u>R</u>_{hh}⁻¹)⁻¹ · <u>G</u>^{*T} · <u>e</u>
sehr schwaches weißes Rauschen σ² → 0: lim <u><u>h</u> = lim _{σ^{2→0}} {(<u>G</u>^{*T} · <u>G</u> + σ²<u>R</u>_{hh}⁻¹)⁻¹ · <u>G</u>^{*T} · <u>e</u>} = (<u>G</u>^{*T} · <u>G</u>)⁻¹ · <u>G</u>^{*T} · <u>e</u> entspricht einem LS-Schätzer, erwartungstreu!
sehr starkes weißes Rauschen σ² → ∞: lim <u><u>h</u> = lim _{σ^{2→∞}} {(<u>G</u>^{*T} · <u>G</u> + σ²<u>R</u>_{hh}⁻¹)⁻¹ · <u>G</u>^{*T} · <u>e</u>} = <u>1</u> / <sub>σ²<u>R</u>_{hh} · <u>G</u>^{*T} · <u>e</u> Falls die Kanalkoeffizienten unkorreliert sind, entspricht dies einem signalangepassten Filter mit Skalierung!
</u></u></u></sub>

Datendetektion

Systemmodell für Einsenderszenarien

- hier nur lineare Modulationsverfahren
- eventuell vorhandene Sendefilter als Bestandteil des Kanals betrachtet
- weißes Gauß-Rauschen <u>n</u> angenommen
- gegebenenfalls erforderliches Prewhitening Filter als Bestandteil des Kanals betrachtet
- Aus dem am Empfänger beobachteten Vektor $\underline{\mathbf{e}} = \underline{\mathbf{H}} \cdot \underline{\mathbf{d}} + \underline{\mathbf{n}}$

soll auf den gesendeten Datenvektor \underline{d} geschlossen werden.

- für gute Performanz weniger Datensymbole als Empfangswerte $N \leq M$
- Die *n*-te Spalte $\underline{\mathbf{H}}_n$ der Kanalmatrix $\underline{\mathbf{H}}$ entspricht der Empfangssignatur des *n*-ten Datensymbols \underline{d}_n .

Systemmodell für Mehrsenderszenarien

In Mehrempfängerszenarien muss die Datendetektion separat an jedem Empfänger erfolgen.

Bell Labs Layered Space Time (BLAST)

G. J. Foschini: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. *Bell Labs Technical Journal*, Bd. 1, S. 41-59, 1996.

Datendetektionsaufgabe

- Es gibt insgesamt $I = |\mathbb{D}|^N$ mögliche Datenvektoren $\underline{\mathbf{d}} \in \mathbb{D}^N$.
- Hypothese \mathcal{H}_i : der *i*-te Datenvektor $\underline{\mathbf{d}} \in \mathbb{D}^N$ liegt vor
- Datendetektion: Entscheidung \mathcal{D}_i für *i*-ten Datenvektor auf Basis des Beobachtungsvektors $\underline{\mathbf{e}} = \underline{\mathbf{H}} \cdot \underline{\mathbf{d}} + \underline{\mathbf{n}}$
- Datendetektor ist durch Entscheidungsgebiete R_i definiert: $\underline{\mathbf{e}} \in R_i \Rightarrow$ Entscheidung für \mathcal{D}_i

S. M. Kay: *Fundamentals of Statistical Signal Processing: Detection Theory*. Upper Saddle River, NJ: Prentice Hall PTR, 1998, ISBN 0-13-504135-X.

Risiko

- $C_{i,j}$: Kosten der Entscheidung für \mathcal{D}_i wenn \mathcal{H}_j vorliegt
 - Risiko (mittlere Kosten): $R = \sum_{i=1}^{I} \sum_{j=1}^{I} C_{i,j} \Pr\{\mathcal{D}_{i}, \mathcal{H}_{j}\}$ $= \sum_{i=1}^{I} \sum_{j=1}^{I} C_{i,j} \Pr\{\mathcal{H}_{j} | \mathcal{D}_{i}\} \Pr\{\mathcal{D}_{i}\}$ $= \sum_{i=1}^{I} \sum_{j=1}^{I} C_{i,j} \int_{R_{i}} \Pr\{\mathcal{H}_{j} | \underline{\mathbf{e}}\} p(\underline{\mathbf{e}}) d\underline{\mathbf{e}}$ $= \sum_{i=1}^{I} \int_{R_{i}} \underbrace{\sum_{j=1}^{I} C_{i,j} \Pr\{\mathcal{H}_{j} | \underline{\mathbf{e}}\}}_{C_{i}(\underline{\mathbf{e}})} p(\underline{\mathbf{e}}) d\underline{\mathbf{e}}$

Bayes-Detektor

Wähle die Entscheidungsgebiete R_i so, dass das Risiko R minimal wird!

- <u>**e**</u> sollte genau dann zu R_i gehören, wenn $C_i(\underline{\mathbf{e}}) = \sum_{j=1}^{I} C_{i,j} \operatorname{Pr}\{\mathcal{H}_j | \underline{\mathbf{e}}\} \le C_k(\underline{\mathbf{e}}) = \sum_{j=1}^{I} C_{k,j} \operatorname{Pr}\{\mathcal{H}_j | \underline{\mathbf{e}}\}$ für alle k
- Entscheidung \mathcal{D}_i für den Datenvektor, für welchen die bei vorliegen von <u>e</u> entstehenden mittleren Kosten $\sum_{j=1}^{I} C_{i,j} \Pr{\{\mathcal{H}_j | \underline{\mathbf{e}}\}}$ minimal sind.

Optimierungsziele

• (Symbolfolgen-)Fehlerwahrscheinlichkeit:

 $C_{i,j} = \begin{cases} 0 & i = j \\ 1 & \text{sonst} \end{cases}$

- Symbolfehlerwahrscheinlichkeit: $C_{i,j} = Anzahl der Symbolfehler bei Entscheidung für D_i wenn H_j vorliegt$
- Bitfehlerwahrscheinlichkeit:

 $C_{i,j} = Anzahl der Bitfehler bei Entscheidung für <math>\mathcal{D}_i$ wenn \mathcal{H}_j vorliegt

Minimierung der (Symbolfolgen-)Fehlerwahrscheinlichkeit

- mittlere entstehende Kosten bei vorliegen von <u>e</u> entsprechen der Fehlerwahrscheinlichkeit: $C_i(\underline{\mathbf{e}}) = \sum_{j \neq i} \Pr\{\mathcal{H}_j | \underline{\mathbf{e}}\} = 1 - \Pr\{\mathcal{H}_i | \underline{\mathbf{e}}\}$
- Entscheidung D_i für den Datenvektor, für den Pr{H_i | <u>e</u>}~p(<u>e</u>|H_i)Pr{H_i} maximal ist!

Der Maximum-a-posteriori-Detektor (MAP) minimiert die Fehlerwahrscheinlichkeit!

Sonderfall gleichverteilte Datenvektoren:

```
\Pr\{\mathcal{H}_i\} = \frac{1}{I}
```

 \Rightarrow Maximum-Likelihood-Detektor (ML): maximiere $p(\underline{e}|\mathcal{H}_i)$

• Problem: Im allgemeinen muss man die Wahrscheinlichkeiten für alle $I = |\mathbb{D}|^N$ Hypothesen ausrechnen.

ML-Datendetektor

- allgemein: $\underline{\hat{\mathbf{d}}} = \underset{\underline{\mathbf{d}} \in \mathbb{D}^{N}}{\operatorname{argmax}} \{ p(\underline{\mathbf{e}} | \underline{\mathbf{d}}) \} = \underset{\underline{\mathbf{d}} \in \mathbb{D}^{N}}{\operatorname{argmax}} \{ p(\underline{\mathbf{n}} = \underline{\mathbf{e}} - \underline{\mathbf{H}} \cdot \underline{\mathbf{d}}) \}$
- weißes Gauß-Rauschen:

$$\begin{split} \hat{\mathbf{d}} &= \operatorname*{argmax}_{\mathbf{d} \in \mathbb{D}^{N}} \left\{ \frac{1}{(\pi \sigma^{2})^{M}} \cdot e^{-\frac{1}{\sigma^{2}} \left\| \mathbf{e} - \mathbf{H} \cdot \mathbf{d} \right\|^{2}} \right\} \text{Likelihood-Funktion} \\ &= \operatorname*{argmin}_{\mathbf{d} \in \mathbb{D}^{N}} \left\{ \left\| \mathbf{e} - \mathbf{H} \cdot \mathbf{d} \right\|^{2} \right\} \text{Log-Likelihood-Funktion} \\ &= \operatorname*{argmin}_{\mathbf{d} \in \mathbb{D}^{N}} \left\{ \mathbf{e}^{*T} \cdot \mathbf{e} - \mathbf{e}^{*T} \cdot \mathbf{H} \cdot \mathbf{d} - \mathbf{d}^{*T} \cdot \mathbf{H}^{*T} \cdot \mathbf{e} + \mathbf{d}^{*T} \cdot \mathbf{H}^{*T} \cdot \mathbf{H} \cdot \mathbf{d} \right\} \\ &= \operatorname*{argmin}_{\mathbf{d} \in \mathbb{D}^{N}} \left\{ -2\operatorname{Re}\left\{ \mathbf{d}^{*T} \cdot \mathbf{H}^{*T} \cdot \mathbf{e} \right\} + \mathbf{d}^{*T} \cdot \mathbf{H}^{*T} \cdot \mathbf{H} \cdot \mathbf{d} \right\} \end{split}$$

Ungerböck-Empfänger

G. Ungerböck: Adaptive maximum-likelihood receiver for carrier-modulated data-transmission D systems. *Communications, IEEE Transactions on*, Bd. 22, S. 624-636, Mai 1974.

$$\underline{\hat{\mathbf{d}}} = \underset{\underline{\mathbf{d}} \in \mathbb{D}^{N}}{\operatorname{argmin}} \left\{ -2\operatorname{Re}\left(\underline{\mathbf{d}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{e}}}_{\underline{\mathbf{r}}}\right) + \underline{\mathbf{d}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{d}} \right\}$$

Forney-Empfänger

Das dem Vektor \underline{r} überlagerte Rauschen ist farbig.

 \Rightarrow Füge einen Prewhitening Filter <u>W</u> ein!

Maximum-Likelihood-Detektor:

G. D. Forney, Jr.: Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. *Information Theory, IEEE Transactions on*, Bd. 18, S. 363-378, Mai 1972.

Übertragen eines einzigen Datensymbols

- Empfangssignatur $\underline{\mathbf{h}}$, Systemmodell: $\underline{\mathbf{e}} = \underline{\mathbf{h}} \cdot \underline{d} + \underline{\mathbf{n}}$
- weißes Gauß-Rauschen n
- Forney-Ansatz, $\underline{\mathbf{W}} = (1)$:

$$\underline{\hat{d}} = \underset{\underline{d}\in\mathbb{D}}{\operatorname{argmin}} \left\{ \left| \underline{\mathbf{h}}^{*\mathrm{T}} \cdot \underline{\mathbf{e}} - \underline{\mathbf{h}}^{*\mathrm{T}} \cdot \underline{\mathbf{h}} \underline{d} \right|^{2} \right\} = \underset{\underline{d}\in\mathbb{D}}{\operatorname{argmin}} \left\{ \left| \underbrace{\underline{\mathbf{h}}^{*\mathrm{T}}}_{\underline{\underline{\mathbf{h}}}} \cdot \underline{\mathbf{e}} - \underline{d} \right|^{2} \right\}$$

Der optimale Empfänger besteht aus einem signalangepassten Filter und anschließendem Quantisierer!

Beispiel: BPSK

- weißes Gauß-Rauschen <u>**n**</u> mit Leistung (Varianz) σ^2
- BPSK $\Rightarrow \underline{d} \in \{-1; +1\}$, betrachte wegen Symmetrie nur $\underline{d} = -1$
- Die reelle Entscheidungsvariable $\operatorname{Re}(\underline{r}) = \operatorname{Re}\left(-1 + \frac{\underline{\mathbf{h}}^{*T}}{\|\mathbf{h}\|^2} \cdot \underline{\mathbf{n}}\right)$

ist normalverteilt mit Erwartungswert -1 und Varianz $\frac{1}{2}\sigma^2 \frac{1}{\|\mathbf{h}\|^2}$.

Bitfehlerkurve

Bitfehlerwahrscheinlichkeit:
$$P_{\rm b} = Q(\sqrt{\gamma_{\rm Re}}) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\gamma_{\rm Re}}{2}}\right) (\operatorname{erfc} \text{ in Matlab})$$

lineares Datenschätzen

linearer Schätzer beschrieben durch Demodulatormatrix <u>D</u>:

 $\underline{\hat{\mathbf{d}}} = \underline{\mathbf{D}} \cdot \underline{\mathbf{e}} = \underline{\mathbf{D}} \cdot \underline{\mathbf{H}} \cdot \underline{\mathbf{d}} + \underline{\mathbf{D}} \cdot \underline{\mathbf{n}}$

- <u>**H**</u>_n: *n*-te Spalte der Kanalmatrix <u>**H**</u>, Empfangssignatur des *n*-ten Datensymbols \underline{d}_n
- $\underline{\mathbf{D}}_n$: *n*-te Zeile der Demodulatormatrix $\underline{\mathbf{D}}$, Empfangsfilter des *n*-ten Datensymbols \underline{d}_n

•
$$\underline{\hat{d}}_n = \underline{\mathbf{D}}_n \cdot \underline{\mathbf{e}} = \underbrace{\underline{\mathbf{D}}_n \cdot \underline{\mathbf{H}}_n \cdot \underline{d}_n}_{\text{Nutzanteil}} + \underbrace{\sum_{l \neq n} \underline{\mathbf{D}}_n \cdot \underline{\mathbf{H}}_l \cdot \underline{d}_l}_{\text{Interferenz}} + \underbrace{\underline{\mathbf{D}}_n \cdot \underline{\mathbf{n}}}_{\text{Rauschen}}$$

empfängerseitige signalangepasste Filterung (MF) (1)

Maximiere das SNR, ignoriere die Interferenzen!

- SNR des *n*-ten Datensymbols \underline{d}_n : $\gamma_n = \frac{\mathrm{E}\left\{ \left|\underline{\mathbf{D}}_n \cdot \underline{\mathbf{H}}_n \cdot \underline{d}_n\right|^2 \right\}}{\mathrm{E}\left\{ \left|\underline{\mathbf{D}}_n \cdot \underline{\mathbf{n}}\right|^2 \right\}} = \frac{\left|\underline{\mathbf{D}}_n \cdot \underline{\mathbf{H}}_n\right|^2 \mathrm{E}\left\{ \left|\underline{d}_n\right|^2 \right\}}{\sigma^2 \left\|\underline{\mathbf{D}}_n\right\|^2}$
- Schwarzsche Ungleichung: $|\underline{\mathbf{D}}_n \cdot \underline{\mathbf{H}}_n|^2 \leq ||\underline{\mathbf{D}}_n||^2 ||\underline{\mathbf{H}}_n||^2$ mit Gleichheit für $\underline{\mathbf{D}}_n^{*\mathrm{T}} \sim \underline{\mathbf{H}}_n$
- skaliere so, dass $\underline{\mathbf{D}}_n \cdot \underline{\mathbf{H}}_n = 1$:

$$\Rightarrow \underline{\mathbf{D}}_{n} = \frac{\underline{\mathbf{H}}_{n}^{*\mathrm{T}}}{\left\|\underline{\mathbf{H}}_{n}\right\|^{2}} = \frac{\underline{\mathbf{H}}_{n}^{*\mathrm{T}}}{\left[\underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}\right]_{n,n}}$$

erzieltes maximales SNR:

$$\gamma_{n,\mathrm{MF}} = \frac{\left\|\underline{\mathbf{H}}_{n}\right\|^{2} \mathbf{E}\left\{\left|\underline{d}_{n}\right|^{2}\right\}}{\sigma^{2}} = \frac{E_{n}}{N_{0}}$$

empfängerseitige signalangepasste Filterung (MF) (2)

Empfang eines Datenvektors:

$$\underline{\mathbf{D}}_{\mathrm{MF}} = \left(\mathrm{diag}(\underline{\mathbf{H}}^{*\mathrm{T}}\cdot\underline{\mathbf{H}})\right)^{-1}\cdot\underline{\mathbf{H}}^{*\mathrm{T}}$$

empfängerseitiges Zero-Forcing (ZF)

Beschränke die Suche im ML-Ansatz nicht auf diskrete Datensymbole!

• Demodulatormatrix (linke Pseudoinverse von $\underline{\mathbf{H}}$): $\underline{\hat{\mathbf{d}}} = \operatorname{argmin}_{\underline{\mathbf{d}}} \left\{ \left\| \underline{\mathbf{e}} - \underline{\mathbf{H}} \cdot \underline{\mathbf{d}} \right\|^2 \right\} = \left(\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}} \right)^{-1} \cdot \underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{e}} \implies \underline{\mathbf{D}}_{ZF} = \left(\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}} \right)^{-1} \cdot \underline{\mathbf{H}}^{*T}$

• Energieeffizienz des *n*-ten Datensymbols \underline{d}_n : $\varepsilon_n = \frac{\text{SNR ZF}}{\text{SNR MF}} = \frac{1}{[\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}}]_{n n} [(\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}})^{-1}]_{n n}} \leq 1$

Raummultiplex in der Aufwärtsstrecke

• $\underline{\mathbf{e}} = \underline{\mathbf{H}} \cdot \underline{\mathbf{d}} + \underline{\mathbf{n}}$ $\underline{\mathbf{H}} = (\underline{h}_{\mathrm{RP}}^{(1)} \underline{\mathbf{a}}_{\mathrm{Rx}}^{(1)} \quad \underline{h}_{\mathrm{RP}}^{(2)} \underline{\mathbf{a}}_{\mathrm{Rx}}^{(2)})$ • Beispiel: $\underline{\mathbf{H}} = \begin{pmatrix} \underline{h}_{\mathrm{RP}}^{(1)} e^{j\frac{\pi}{2}} & \underline{h}_{\mathrm{RP}}^{(2)} e^{-j\frac{\pi}{2}} \\ \underline{h}_{\mathrm{RP}}^{(1)} & \underline{h}_{\mathrm{RP}}^{(2)} \\ \underline{h}_{\mathrm{RP}}^{(1)} & \underline{h}_{\mathrm{RP}}^{(2)} \\ \underline{h}_{\mathrm{RP}}^{(1)} e^{-j\frac{\pi}{2}} & \underline{h}_{\mathrm{RP}}^{(1)} e^{j\frac{\pi}{2}} \end{pmatrix}$

lineares Datenschätzen in Raummultiplexsystemen

• empfängerseitiges MF: $\underline{\mathbf{D}}_{MF} = \left(\operatorname{diag}(\underline{\mathbf{H}}^{*T} \cdot \underline{\mathbf{H}}) \right)^{-1} \cdot \underline{\mathbf{H}}^{*T}$

empfängerseitiges ZF: $\mathbf{D}_{\mathrm{ZF}} = \left(\underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}\right)^{-1} \cdot \underline{\mathbf{H}}^{*\mathrm{T}}$ $g_{\rm Rx}(\beta_{\rm Rx})$ $\overline{\max}(g_{\mathrm{Rx}}(\beta_{\mathrm{Rx}}))$ 90 120 60 $\beta_{\rm Rx}$ 30 150 180 0 210 330 300 240 270

Vorcodieren

Systemmodell für Einempfängerszenarien

- eventuell vorhandene Empfangsfilter als Bestandteil des Kanals betrachtet
- weißes Rauschen der Leistung σ^2
- Der Sendevektor <u>s</u> soll so gewählt werden, dass eine möglichst gute Datenschätzung <u><u>d</u> = <u><u>H</u> · <u>s</u> + <u>n</u> am Empfängerausgang resultiert.
 </u></u>
- für gute Performanz mehr Sendewerte als Datensymbole $N \ge M$
- Die *m*-te Zeile $\underline{\mathbf{H}}_m$ der Kanalmatrix $\underline{\mathbf{H}}$ entspricht der Kanalsignatur für das *m*-te Datensymbol \underline{d}_m .

Systemmodell für Mehrempfängerszenarien

$$\underbrace{\begin{pmatrix} \underline{\hat{\mathbf{d}}}^{(1)} \\ \vdots \\ \underline{\hat{\mathbf{d}}}^{(K)} \end{pmatrix}}_{\widehat{\mathbf{d}}} = \underbrace{\begin{pmatrix} \underline{\mathbf{H}}^{(1)} \\ \vdots \\ \underline{\mathbf{H}}^{(K)} \end{pmatrix}}_{\underline{\mathbf{H}}} \cdot \underline{\mathbf{s}} + \underbrace{\begin{pmatrix} \underline{\mathbf{n}}^{(1)} \\ \vdots \\ \underline{\mathbf{n}}^{(K)} \end{pmatrix}}_{\underline{\mathbf{n}}}$$

lineares Vorcodieren

linearer Vorcodierer beschrieben durch Modulatormatrix <u>M</u>:

$$\underline{\hat{d}} = \underline{H} \cdot \underline{s} + \underline{n} = \underline{H} \cdot \underline{M} \cdot \underline{d} + \underline{n}$$

- $\underline{\mathbf{H}}_m$: *m*-te Zeile der Kanalmatrix $\underline{\mathbf{H}}$, Kanalsignatur des *m*-ten Datensymbols \underline{d}_m
- $\underline{\mathbf{M}}_m$: *m*-te Spalte der Modulatormatrix $\underline{\mathbf{M}}$, Sendefilter des *m*-ten Datensymbols \underline{d}_m

•
$$\underline{\hat{d}}_m = \underline{\mathbf{H}}_m \cdot \underline{\mathbf{s}} + \underline{n}_m = \underbrace{\mathbf{H}}_m \cdot \underline{\mathbf{M}}_m \cdot \underline{d}_m_{m} + \underbrace{\sum_{l \neq m} \underline{\mathbf{H}}_m \cdot \underline{\mathbf{M}}_l \cdot \underline{d}_l}_{\text{Interferenz}} + \underbrace{\underline{n}}_{\text{Rauschen}}$$

senderseitige signalangepasste Filterung (MF) (1)

Maximiere das SNR bei beschränkter Sendeenergie, ignoriere die Interferenzen!

- SNR des *m*-ten Datensymbols \underline{d}_m : $\gamma_m = \frac{\mathrm{E}\{|\underline{\mathbf{H}}_m \cdot \underline{\mathbf{M}}_m \cdot \underline{d}_m|^2\}}{\mathrm{E}\{|\underline{n}_m|^2\}} = \frac{|\underline{\mathbf{H}}_m \cdot \underline{\mathbf{M}}_m|^2 \mathrm{E}\{|\underline{d}_m|^2\}}{\sigma^2}$
- Schwarzsche Ungleichung: $|\underline{\mathbf{H}}_{m} \cdot \underline{\mathbf{M}}_{m}|^{2} \leq ||\underline{\mathbf{H}}_{m}||^{2} ||\underline{\mathbf{M}}_{m}||^{2} \text{ mit Gleichheit für } \underline{\mathbf{H}}_{m}^{*\mathrm{T}} \sim \underline{\mathbf{M}}_{m}$ • skaliere so, dass $\underline{\mathbf{H}}_{m} \cdot \underline{\mathbf{M}}_{m} = 1$: $\Rightarrow \underline{\mathbf{M}}_{m} = \frac{\underline{\mathbf{H}}_{m}^{*\mathrm{T}}}{||\underline{\mathbf{H}}_{m}||^{2}} = \frac{\underline{\mathbf{H}}_{m}^{*\mathrm{T}}}{[\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*\mathrm{T}}]_{m,m}}$
 - erforderliche minimale Sendeenergie:

$$E_{m,\mathrm{MF}} = \frac{T \mathrm{E}\left\{\left|\underline{d}_{m}\right|^{2}\right\}}{\left\|\underline{\mathbf{H}}_{m}\right\|^{2}}$$

senderseitige signalangepasste Filterung (MF) (2)

Senden eines Datenvektors:

$$\underline{\mathbf{M}}_{\mathrm{MF}} = \underline{\mathbf{H}}^{*\mathrm{T}} \cdot \left(\mathrm{diag}(\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*\mathrm{T}}) \right)^{-1}$$

senderseitiges Zero-Forcing (ZF) (1)

Suche ein zu interferenzfreien Datenschätzungen führendes Sendesignal \underline{s} minimaler Energie!

- minimiere die Energie $\|\underline{s}\|^2 = \underline{s}^{*T} \cdot \underline{s}$ unter der Nebenbedingung $\underline{d} = \underline{H} \cdot \underline{s}$
- $\underline{\mathbf{s}} = \underline{\mathbf{H}}^{*T} \cdot (\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T})^{-1} \cdot \underline{\mathbf{d}}$ erfüllt die Nebenbedingung: $\underline{\mathbf{H}} \cdot \underline{\mathbf{s}} = \underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T} \cdot (\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T})^{-1} \cdot \underline{\mathbf{d}} = \underline{\mathbf{d}}$ • jedes andere $\underline{\mathbf{s}} + \Delta \underline{\mathbf{s}}$, welches die Nebenbedingung $\underline{\mathbf{d}} = \underline{\mathbf{H}} \cdot (\underline{\mathbf{s}} + \Delta \underline{\mathbf{s}}) \Rightarrow \underline{\mathbf{H}} \cdot \Delta \underline{\mathbf{s}} = \mathbf{0}$ erfüllt, hat eine größere Energie: $(\underline{\mathbf{s}} + \Delta \underline{\mathbf{s}})^{*T} \cdot (\underline{\mathbf{s}} + \Delta \underline{\mathbf{s}}) = \underline{\mathbf{s}}^{*T} \cdot \underline{\mathbf{s}} + \underline{\mathbf{s}}^{*T} \cdot \Delta \underline{\mathbf{s}} + \Delta \underline{\mathbf{s}}^{*T} \cdot \underline{\mathbf{s}} + \Delta \underline{\mathbf{s}}^{*T} \cdot \Delta \underline{\mathbf{s}}$ $= \|\underline{\mathbf{s}}\|^{2} + \underline{\mathbf{d}}^{*T} \cdot (\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T})^{-1} \cdot \underbrace{\underline{\mathbf{H}}} \cdot \Delta \underline{\mathbf{s}} + \underbrace{\Delta \underline{\mathbf{s}}^{*T} \cdot \underline{\mathbf{H}}^{*T}}_{\mathbf{0}} \cdot (\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T})^{-1} \cdot \underline{\mathbf{d}} + \underbrace{\|\Delta \underline{\mathbf{s}}\|^{2}}_{>0}$

 $\geq \left\|\underline{\mathbf{s}}\right\|^2$

senderseitiges Zero-Forcing (ZF) (2)

• Sendesignal:

$$\underline{\mathbf{s}} = \underline{\mathbf{H}}^{*\mathrm{T}} \cdot \left(\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*\mathrm{T}}\right)^{-1} \cdot \underline{\mathbf{d}}$$

• Modulatormatrix (rechte Pseudoinverse von <u>H</u>):

 $\underline{\mathbf{M}}_{\text{ZF}} = \underline{\mathbf{H}}^{*\text{T}} \cdot \left(\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*\text{T}}\right)^{-1}$

• Sendenergie:

$$E_{m,\text{ZF}} = T\left[\underline{\mathbf{M}}_{\text{ZF}}^{*\text{T}} \cdot \underline{\mathbf{M}}_{\text{ZF}}\right]_{m,m} \mathbb{E}\left\{\left|\underline{d}_{m}\right|^{2}\right\} = T\left[\left(\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*\text{T}}\right)^{-1}\right]_{m,m} \mathbb{E}\left\{\left|\underline{d}_{m}\right|^{2}\right\}$$

senderseitiges Zero-Forcing (ZF) (3)

Raummultiplex in der Abwärtsstrecke

lineares Sendesignalerzeugen in Raummultiplexsystemen

senderseitiges MF:

$$\underline{\mathbf{M}}_{\mathrm{MF}} = \underline{\mathbf{H}}^{*\mathrm{T}} \cdot \left(\mathrm{diag}(\underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}) \right)^{-1}$$

senderseitiges ZF: $\underline{\mathbf{M}}_{ZF} = \underline{\mathbf{H}}^{*T} \cdot (\underline{\mathbf{H}} \cdot \underline{\mathbf{H}}^{*T})^{-1}$

Diversität

Diversitätsbegriff

Funkübertragungswege sind unsicher

⇒ übertrage Information parallel auf mehreren (unabhängigen) Wegen vom Sender zum Empfänger

Beispiele:

- Zeitdiversität
- Frequenzdiversität
- Antennendiversität

Antennendiversitätstechniken

Empfangsdiversität (SIMO)

Rx

Sendediversität (MISO)

Gleichzeitiges Senden des selben Signals über mehrere Antennen ergibt keinen Diversitätsgewinn!

Тχ

- Mikrodiversität: Antennen nah beieinander, Gruppenantennen
 ⇒ gleiche Ausbreitungspfade
- Makrodiversität: Antennen weit auseinander, unterschiedliche Ausbreitungspfade
 ⇒ unterschiedliche Ausbreitungsszenarien

Empfangsdiversität

Analyse der Performanz von Empfangsdiversität

- SNRs der einzelnen Diversitätspfade: $\gamma_m = \frac{|\underline{h}_m|^2 \mathbf{E}\{|\underline{d}|^2\}}{\sigma^2}$
- Nutzanteil der kombinierten Schätzung:

$$\frac{\hat{d}_{\text{Nutz}}}{=} \sum_{m=1}^{M} \frac{\left|\underline{h}_{m}\right|^{2}}{\left\|\underline{h}\right\|^{2}} \underline{d} = \underline{d}$$

$$\Rightarrow \text{Nutzleistung: } S = \text{E}\left\{\left|\underline{d}\right|^{2}\right\}$$

• Rauschanteil der kombinierten Schätzung: $\frac{\hat{d}_{Rausch}}{\hat{d}_{Rausch}} = \sum_{m=1}^{M} \frac{\underline{h}_{m}^{*}}{\|\underline{\mathbf{h}}\|^{2}} \underline{n}_{m}$ $\Rightarrow \text{Rauschleistung: } N = \frac{\sigma^{2}}{\|\underline{\mathbf{h}}\|^{2}}$ • SNR der kombinierten Schätzung: $\gamma = \frac{S}{N} = \frac{\|\underline{\mathbf{h}}\|^{2} E\{|\underline{d}|^{2}\}}{\sigma^{2}} = \sum_{m=1}^{M} \gamma_{m}$

stochastische Performanzanalyse

• vereinfachend gleicher mittlerer Kanalgewinn der einzelnen Diversitätspfade: $E\left\{\left|\underline{h}_{m}\right|^{2}\right\} = \sigma_{m}^{2} = \frac{\sigma_{h}^{2}}{M} \Leftrightarrow E\left\{\left\|\underline{\mathbf{h}}\right\|^{2}\right\} = \sigma_{h}^{2}$

 \Rightarrow gleiche mittlere SNRs der einzelnen Diversitätspfade:

$$\mathbf{E}\{\gamma_m\} = \overline{\gamma}_m = \frac{\overline{\gamma}}{M} = \frac{\sigma_h^2 \mathbf{E}\{|\underline{d}|^2\}}{M\sigma^2} \Leftrightarrow \mathbf{E}\{\gamma\} = \overline{\gamma}$$

 SNRs der einzelnen Diversitätspfade sind exponentialverteilt (chi-quadrat-verteilt mit 2 Freiheitsgraden):

$$p_{\gamma_m}(\gamma_m) = \begin{cases} \frac{M}{\overline{\gamma}} e^{-\frac{M\gamma_m}{\overline{\gamma}}} & \gamma_m > 0\\ 0 & \text{sonst} \end{cases}$$

SNR der kombinierten Schätzung ist chi-quadrat-verteilt mit 2*M* Freiheitsgraden:

$$p_{\gamma}(\gamma) = \begin{cases} \frac{\gamma^{M-1}M^{M}}{\overline{\gamma}^{M}(M-1)!} e^{-\frac{M\gamma}{\overline{\gamma}}} & \gamma > 0\\ 0 & \text{sonst} \end{cases}$$

Ausfallwahrscheinlichkeit

$$P_{\text{out}} = \Pr\{\gamma < \gamma_{\min}\} = \int_{-\infty}^{\gamma_{\min}} p_{\gamma}(\gamma) d\gamma = 1 - e^{-\frac{M\gamma_{\min}}{\overline{\gamma}}} \sum_{m=0}^{M-1} \frac{\left(\frac{M\gamma_{\min}}{\overline{\gamma}}\right)^m}{m!}$$

Sendediversität

Analyse der Performanz von Sendediversität

- gleiche Sendeleistung $E\left\{\left|\underline{d}\right|^{2}\right\}$ wie bei Empfangsdiversität
- Nutzleistung: $S = \|\underline{\mathbf{h}}\|^2 \mathrm{E} \{ |\underline{d}|^2 \}$
- Rauschleistung: $N = \sigma^2$
- SNR der Schätzung:

$$\gamma = \frac{S}{N} = \frac{\left\|\underline{\mathbf{h}}\right\|^2 \mathbf{E}\left\{\left|\underline{d}\right|^2\right\}}{\sigma^2}$$

 \Rightarrow gleiche Performanz wie Empfangsdiversität

senderseitige Kanalkenntnis erforderlich!

Alamouti-Schema

Sendediversität lässt sich auch ohne senderseitige Kanalkenntnis nutzen!

S. M. Alamouti: A simple transmit diversity technique for wireless communications. *Selected Areas in Communications, IEEE Journal on*, Bd. 16, S. 1451-1458, Oktober 1998.

ML-Datendetektor

- Die Spalten der Kanalmatrix <u>H</u> sind orthogonal.
 - ⇒ Der Optimalempfänger besteht aus signalangepasstem Filter und anschließendem Quantisierer:

$$\frac{\hat{\mathbf{d}} = \left(\operatorname{diag}\left(\underline{\mathbf{H}}^{*\mathrm{T}} \cdot \underline{\mathbf{H}}\right)\right)^{-1} \cdot \underline{\mathbf{H}}^{*\mathrm{T}} \cdot \left(\frac{\underline{e}_{1}}{\underline{e}_{2}^{*}}\right) = \frac{1}{\left|\underline{h}_{1}\right|^{2} + \left|\underline{h}_{2}\right|^{2}} \left(\frac{\underline{h}_{1}^{*}}{\underline{h}_{2}^{*}} - \underline{h}_{1}\right) \cdot \left(\frac{\underline{e}_{1}}{\underline{e}_{2}^{*}}\right) \\
= \left(\frac{\underline{d}_{1}}{\underline{d}_{2}}\right) + \frac{1}{\left|\underline{h}_{1}\right|^{2} + \left|\underline{h}_{2}\right|^{2}} \left(\frac{\underline{h}_{1}^{*}\underline{n}_{1}}{\underline{h}_{2}^{*}\underline{n}_{1}} - \underline{h}_{1}\underline{n}_{2}^{*}\right)$$

SNR der Schätzungen des signalangepassten Filters:

$$\gamma = \frac{\|\underline{\mathbf{h}}\|^2 \mathrm{E}\{|\underline{d}|\}}{\sigma^2}$$

Gleiches SNR γ wie bei Sendediversität mit senderseitiger Kanalkenntnis, allerdings wurde die doppelte Sendeleistung benötigt da kein Strahlformungsgewinn!